Abstract: A 2×2 fiber-optic (FO) switch using electronically controlled light beam deflectors such as acousto-optic deflectors is described. The switch structure can be modified to serve as variable FO attenuators and frequency shifters. The basic no moving parts FO switch/attenuator structure can be used for routing and controlling multiple light signals in optical networks such as wavelength division multiplexed (WDM) optical communications, distributed sensor networks, and photonic signal processing systems requiring optical routing and gain control.
Abstract: Fiber-optic beam routing and amplitude control modules based on a unique fault-tolerant scheme using a macro-pixel to control an optical beam are proposed. The unique macro-pixel method involving multiple device pixels per beam inherently provides a robust digital technique for module control while adding to the optical beam alignment tolerance and resistance to catastropic failure for the overall module. The macropixel approach solves the speed versus alignment and failure sensitivity dilemma present in single pixel element based optical micromechanical systems (MEMS). Specifically proposed are fault tolerant fiber-optic attenuators and switches using several microactuated micromirrors per optical beam. Transmissive and reflective module geometries are proposed using small tilt and small distance piston-action micromirrors, leading to fast module reconfiguration speed fiber optic signal controls. The macro-pixel design approach is extended to other pixel technologies such as polarization rotating pixels.