Patents Assigned to Light Sciences Corporation
-
Publication number: 20070260295Abstract: A light transmission system to provide photodynamic treatment to a patient includes a single use integrated control module and catheter assembly having a plurality of light emitting diodes (LEDs) to transmit light toward target cells within a patient. The integrated light catheter and control module are used in combination with a light activated drug. Selected operating parameters may be programmed into the control module, or it may be wirelessly programmable in situ prior to use to allow user flexibility to tailor treatment for a particular patient or condition. Among the features that prevent reuse are that the control module lacks access to recharge the power source, and it may include a deactivation module that destroys circuitry or software when triggered. To prevent patient interference when in use, the control module may also be configured to selectively deactivate.Type: ApplicationFiled: May 3, 2006Publication date: November 8, 2007Applicants: Light Sciences Corporation, Light Sciences Oncology, Inc.Inventors: James Chen, Steven Daly, Zihong Guo, Llew Keltner, Jeffrey Storm
-
Publication number: 20070002582Abstract: A method of manufacture and medical apparatus that provides an apparatus useful in illuminating at least a portion of a lumen of a body. The apparatus includes an elongated flexible member and a polymer encasement portion encasing a plurality of light emitters. The light emitters may be electrically coupled to one another without the use of wire bonds, and in some embodiments may be coupled without intervening electrical paths or traces. A maximum cross-sectional dimension of the polymer encasement portion may be less than twice a dimension of one of the light emitters. In some embodiments the maximum cross-sectional dimension is less than or equal to the sum of the dimension of one of the light emitters and a marginal dimension by which an outer portion of the polymer encasement portion extends beyond the light emitter. Light emitters may be arranged linearly, helically or in partially overlapping back-to-back relation.Type: ApplicationFiled: December 30, 2005Publication date: January 4, 2007Applicant: Light Sciences CorporationInventors: Phillip Burwell, James Chen, Zihong Guo, Steven Daly, David Shine, Gary Lichttenegger, Jennifer Matson, Jean Bishop, Nick Yeo, Hugh Narciso
-
Publication number: 20060067889Abstract: Provided herein are conjugates, kits, articles of manufacture and methods for detection, diagnosis and treatment by photodynamic therapy of certain undesired biological substrate targets, including, but not limited to bacteria, viruses, and other pathogenic microorganisms, tumors and hyperproliferative tissue. In particular, the conjugates provided include a fluorophore or photosensitizer linked to a targeting moiety and a quenching agent in such a way that activation of the fluorophore or the photosensitizer is quenched unless the targeting moiety is bound to a target, whereupon the quenching agent dissociates or moves away from the photosensitizer, enabling activation of the photosensitizer upon irradiation with light of a suitable wavelength.Type: ApplicationFiled: September 27, 2004Publication date: March 30, 2006Applicant: Light Sciences CorporationInventors: Alexander Pallenberg, James Chen
-
Patent number: 7018395Abstract: The present invention is drawn to methods for photodynamic therapy (PDT) of a target cell, target tissue or target composition in a mammalian subject, using a therapeutically effective amount of a targeted substance, which is either a targeted photosensitizing agent, or a photosensitizing agent delivery system, or a targeted prodrug. This targeted substance preferably selectively binds to the target cell, target tissue or target composition. Light at a wavelength or waveband corresponding to that which is absorbed by the targeted substance is then administered. The light intensity is relatively low, but a high total fluence is employed to ensure the activation of the targeted photosensitizing agent or targeted prodrug product.Type: GrantFiled: March 16, 2004Date of Patent: March 28, 2006Assignee: Light Sciences CorporationInventor: James Chen
-
Patent number: 6986782Abstract: Methods for delivering light to a treatment site of a patient to administer a light therapy thereto are provided. A method includes steps of providing a portable power source, and a light source configured to provide light suitable for the light therapy for a period of at least two hours, and an optical fiber; positioning a distal portion of the optical fiber that is adapted to be disposed at the treatment site within a patient's body, where the light generated by the light source and conveyed by the optical fiber exits from the distal portion of the optical fiber; energizing the light source with the portable power supply; and administering the light treatment to the treatment site with the light source, wherein the patient is ambulatory without interruption of the light therapy during the treatment.Type: GrantFiled: August 1, 2002Date of Patent: January 17, 2006Assignee: Light Sciences CorporationInventors: James Chen, Brian Wilkerson, Dave Brown, Darrin Huston, Mike McQuade
-
Patent number: 6899723Abstract: The present invention is drawn to methods and compounds for photodynamic therapy (PDT) of a target tissue or compositions in a mammalian subject, using a light source that preferably transmits light to a treatment site transcutaneously. The method provides for administering to the subject a therapeutically effective amount of a targeted substance, which is either a targeted photosensitizing agent, or a photosensitizing agent delivery system, or a targeted prodrug. This targeted substance preferably selectively binds to the target tissue. Light at a wavelength or waveband corresponding to that which is absorbed by the targeted substance is then administered. The light intensity is relatively low, but a high total fluence is employed to ensure the activation of the targeted photosensitizing agent or targeted prodrug product.Type: GrantFiled: July 13, 2001Date of Patent: May 31, 2005Assignee: Light Sciences CorporationInventor: James Chen
-
Publication number: 20050085455Abstract: The present invention is drawn to methods and compounds for transcutaneous photodynamic therapy (“PDT”) of target adipocyte cells or adipose tissue in a mammalian subject, which includes administering to the subject a therapeutically effective amount of a photosensitizing agent or a photosensitizing agent delivery system or a prodrug, where the photosensitizing agent or photosensitizing agent delivery system or prodrug selectively binds to the target tissue; and irradiating at least a portion of the subject with light at a wavelength absorbed by the photosensitizing agent or if prodrug, by a prodrug product thereof, where the light is provided by a light source, and where the irradiation is at low fluence rate that results in the activation of the photosensitizing agent or prodrug product. These methods of transcutaneous PDT are useful for the reduction of adipose tissue and adipocytes.Type: ApplicationFiled: October 16, 2003Publication date: April 21, 2005Applicant: Light Sciences CorporationInventor: James Chen
-
Publication number: 20040243198Abstract: A system and method for excitation of photosensitizers is configured to provide desired illumination on targeted eye tissue. The excitation system includes an optical module that generates illumination and a controller to power the optical module and control the shape, intensity or energy level, and duration of the illumination. The optical module includes a contact portion for interfacing with the eye, a treatment beam portion including a light emitter array to generate shaped light patterns and optics to focus the light patterns onto the eye, and a visualization portion to provide visual feedback of treatment through a visualization interface coupled with a microscope. A typical treatment involves the optical module being placed on a diseased eye of a patient by a clinician to project illumination on a diseased portion of the eye. The clinician typically views the eye through the microscope and the optical module during treatment.Type: ApplicationFiled: October 2, 2003Publication date: December 2, 2004Applicant: Light Sciences CorporationInventors: Gregory L. Heacock, Darrin Huston, James C. Chen, Steven R. Daly
-
Patent number: 6657351Abstract: A flux generator base unit electromagnetically coupled with a receiving unit to transfer energy into the receiving unit. The base unit includes one or more permanent magnets that produce a magnetic flux, which passes through a receiver coil in the receiving unit. The receiver coil is either disposed in a separate housing that is electrically connected with a portable device, or integrated into the housing of the portable device. Either the permanent magnets or a flux shunt is moved in the base unit to produce the varying magnetic flux that is coupled to the receiver coil. As a result of the varying magnetic field experienced by the receiver coil, an electric current is induced in the receiver coil, which is conditioned (e.g., rectified, filtered, and regulated) by a conditioning circuit to charge a battery or energize electronics contained in the portable device.Type: GrantFiled: July 20, 2001Date of Patent: December 2, 2003Assignee: Light Sciences CorporationInventors: James C. Chen, Darrin Huston, Brian D. Wilkerson
-
Patent number: 6602274Abstract: The present invention is drawn to methods and compounds for photodynamic therapy (PDT) of a target tissue or compositions in a mammalian subject, using a light source that preferably transmits light to a treatment site transcutaneously. The method provides for administering to the subject a therapeutically effective amount of a targeted substance, which is either a targeted photosensitizing agent, or a photosensitizing agent delivery system, or a targeted prodrug. This targeted substance preferably selectively binds to the target tissue. Light at a wavelength or waveband corresponding to that which is absorbed by the targeted substance is then administered. The light intensity is relatively low, but a high total fluence is employed to ensure the activation of the targeted photosensitizing agent or targeted prodrug product.Type: GrantFiled: March 18, 1999Date of Patent: August 5, 2003Assignee: Light Sciences CorporationInventor: James Chen
-
Patent number: 6580228Abstract: A lamp using solid-state light emitting sources is configured to be used in a conventional socket. The lamp includes a flexible substrate on which are mounted a plurality of light emitting sources, such as light emitting diodes (LEDs) in spaced-apart array. In one embodiment, a flexible substrate configured as a generally rectangular panel formed into a cylindrical shape includes a plurality of conductive traces to which the LEDs are connected both mechanically and electrically. The flexible substrate is then enclosed within a light transmissive translucent cover that is attached to a base in which is disposed a power supply. The base is shaped and configured to be threaded into a conventional incandescent light socket and includes a center terminal through which AC line power is supplied to the power supply. The power supply provides an appropriate voltage and current to energize the light sources so that they produce a white light that is emitted radially outward around a longitudinal axis of the lamp.Type: GrantFiled: August 22, 2000Date of Patent: June 17, 2003Assignee: Light Sciences CorporationInventors: James C. Chen, Darrin Huston, Brent Wiscombe
-
Patent number: 6554853Abstract: A photosensitizer suitable for use in administering photodynamic therapy (PDT), conjugated with antibodies that are targeted to antigens on abnormal tissue and polyethylene glycol (PEG) or other polymer that extends the residence time of the conjugate within a patient's body. The resulting pegylated targeted conjugate is administered to a patient, and after the antibodies have had sufficient time to bind with the antigens, light from an external or internal source having a waveband corresponding to an absorption waveband of the photosensitizer is administered. Use of an external light source that emits relatively long wavelength light enables the light to pass through any intervening dermal layer and normal tissue between the external light source and the treatment site. Since the photosensitizer in the conjugate is bound to the abnormal tissue, the light therapy has minimal effect on the intervening normal tissue.Type: GrantFiled: July 20, 2001Date of Patent: April 29, 2003Assignee: Light Sciences CorporationInventor: James C. Chen
-
Patent number: 6520669Abstract: Exterior lighting assemblies for use on vehicles include a flexible substrate on which are mounted a plurality of solid-state light emitting devices. Preferably, light emitting diodes (LEDs) are used for the solid-state light emitting devices, although other types of devices can alternatively be employed. The light emitting devices are connected to flexible conductive traces provided on the flexible substrate and leads are provided to connect to the power supply on the vehicle so that electrical current can be selectively supplied to energize the light emitting devices. The flexible substrate is adapted to be mounted on the exterior surface of a vehicle, for example, as a tail lamp assembly, or as a headlamp. Light emitting devices that emit different colored light can be used to provide red light to indicate slowing of the vehicle due to braking, amber light for turn signal indication, and white light to illuminate the surface over which the vehicle is traveling.Type: GrantFiled: June 19, 2000Date of Patent: February 18, 2003Assignee: Light Sciences CorporationInventors: James C. Chen, Darrin Huston
-
Publication number: 20030018371Abstract: Methods and compositions useful for targeting and treating target tissues affected by or involved in metabolic bone disorders and bone metastases with photodynamic therapy (PDT) in a mammalian subject are provided. The compositions are biphosphonates, pyrophosphates, or biphosphonate-like compounds conjugated to photosensitive agents which are optionally further conjugated to ligands which are target tissue specific antibodies, peptides, or polymers. The method of PDT treatment utilize these compositions to target the tissues or cells of a mammalian subject to be treated. The methods include irradiating at least a portion of the subject with light at a wavelength absorbed by said photosensitizing agent that under conditions of activation during photodynamic therapy using a relatively low fluence rate, but an overall high total fluence dose results in minimal collateral tissue damage.Type: ApplicationFiled: July 13, 2001Publication date: January 23, 2003Applicant: Light Sciences CorporationInventor: James Chen
-
Patent number: 6454789Abstract: A patient portable photodynamic therapy device securable to a patient includes a lightweight rechargeable battery and a cold cathode fluorescent (CCF) tube powered thereby. The CCF tube is coupled in light channeling relation to a proximal portion of a biocompatible optical fiber, which includes a distal portion with an optional diffuser that uniformly distributes light as it exits the distal portion. The distal end of the optical fiber is optionally provided with an anchoring balloon that can be inflated after the optical fiber is properly positioned at a treatment site within a patient's body. The balloon securely lodges the distal portion within the tissue at the treatment site, and is deflated to facilitate the removal of the optical fiber once the treatment is complete.Type: GrantFiled: January 15, 1999Date of Patent: September 24, 2002Assignee: Light Science CorporationInventors: James Chen, Brian Wilkerson, Dave Brown, Darrin Huston, Mike McQuade
-
Patent number: 6416531Abstract: Light is administered during photodynamic therapy (PDT) for an extended period of time at a plurality of sites distributed within the abnormal tissue of a tumor. A clinical study has shown that a substantially greater volume of abnormal tissue in a tumor is destroyed by the extended administration of light therapy from a plurality of probes than would have been expected based upon the teaching of the prior art. In this process, a plurality of light emitting optical fibers or probes are deployed in a spaced-apart array. After a photoreactive agent is absorbed by the abnormal tissue, the light therapy is administered for at least three hours.Type: GrantFiled: June 24, 1998Date of Patent: July 9, 2002Assignee: Light Sciences CorporationInventor: James C. Chen
-
Publication number: 20020087205Abstract: The present invention is drawn to methods and compounds for photodynamic therapy (PDT) of a target tissue or compositions in a mammalian subject, using a light source that preferably transmits light to a treatment site transcutaneously. The method provides for administering to the subject a therapeutically effective amount of a targeted substance, which is either a targeted photosensitizing agent, or a photosensitizing agent delivery system, or a targeted prodrug. This targeted substance preferably selectively binds to the target tissue. Light at a wavelength or waveband corresponding to that which is absorbed by the targeted substance is then administered. The light intensity is relatively low, but a high total fluence is employed to ensure the activation of the targeted photosensitizing agent or targeted prodrug product.Type: ApplicationFiled: July 13, 2001Publication date: July 4, 2002Applicant: Light Sciences CorporationInventor: James Chen
-
Patent number: 6344050Abstract: A photosensitizer suitable for use in administering photodynamic therapy (PDT), conjugated with antibodies that are targeted to antigens on abnormal tissue and polyethylene glycol (PEG) or other polymer that extends the residence time of the conjugate within a patient's body. The resulting pegylated targeted conjugate is administered to a patient, and after the antibodies have had sufficient time to bind with the antigens, light from an external or internal source having a waveband corresponding to an absorption waveband of the photosensitizer is administered. Use of an external light source that emits relatively long wavelength light enables the light to pass through any intervening dermal layer and normal tissue between the external light source and the treatment site. Since the photosensitizer in the conjugate is bound to the abnormal tissue, the light therapy has minimal effect on the intervening normal tissue.Type: GrantFiled: December 21, 1998Date of Patent: February 5, 2002Assignee: Light Sciences CorporationInventor: James C. Chen
-
Publication number: 20020010500Abstract: Light is administered during photodynamic therapy (PDT) for an extended period of time at a plurality of sites distributed within the abnormal tissue of a tumor. A clinical study has shown that a substantially greater volume of abnormal tissue in a tumor is destroyed by the extended administration of light therapy from a plurality of probes than would have been expected based upon the teaching of the prior art. In this process, a plurality of light emitting optical fibers or probes are deployed in a spaced-apart array. After a photoreactive agent is absorbed by the abnormal tissue, the light therapy is administered for at least three hours.Type: ApplicationFiled: June 24, 1998Publication date: January 24, 2002Applicant: Light Sciences CorporationInventor: JAMES C. CHEN
-
Patent number: 6331744Abstract: A flux generator base unit electromagnetically coupled with a receiving unit to transfer energy into the receiving unit. The base unit includes one or more permanent magnets that produce a magnetic flux, which passes through a receiver coil in the receiving unit. The receiver coil is either disposed in a separate housing that is electrically connected with a portable device, or integrated into the housing of the portable device. Either the permanent magnets or a flux shunt is moved in the base unit to produce the varying magnetic flux that is coupled to the receiver coil. As a result of the varying magnetic field experienced by the receiver coil, an electric current is induced in the receiver coil, which is conditioned (e.g., rectified, filtered, and regulated) by a conditioning circuit to charge a battery or energize electronics contained in the portable device.Type: GrantFiled: April 11, 2000Date of Patent: December 18, 2001Assignee: Light Sciences CorporationInventors: James C. Chen, Darrin Huston, Brian D. Wilkerson