Abstract: A circuit and method for running a metal halide arc discharge lamp from an AC power source. The circuit includes a rectifier for producing a DC voltage. The lamp is resistively ballasted by a current limiting filament connected in series with the lamp. The circuit includes a switch that closes during start up of the lamp so that the resistive filament is energized to provide immediate light prior to the lamp entering the normal run mode.
Abstract: A condensing and collecting optical system includes a collimating reflector and focusing reflector. The collimating reflector includes a portion of a paraboloid of revolution having a focal point and an optical axis. The focusing reflector includes a paraboloid of revolution having a focal point and an optical axis. A source of the electromagnetic radiation placed at the focal point of the collimating reflector produces a collimated beam of radiation. The focusing reflector is positioned so as to receive the collimated beam and focus it toward a target positioned at the focal point of the focusing reflector. To achieve maximum illumination at the target, the collimating reflector and the focusing reflector are so constructed and positioned so as to achieve preferably about unit magnification between the source and its focused image, although other magnifications may be achieved.
Abstract: A solid halogen-containing lamp fill material and a method of introducing small amounts of halogen into a HID lamp are disclosed. The solid material may include an admixture of a metal and a metal halide in the form of spheres of high purity, uniform size and uniform composition. Solid lamp fill material and methods of introducing small quantities of one or more metals into a HID lamp are also disclosed.
Abstract: A condensing and collecting optical system includes a first reflector and second reflector. The first and second reflectors and includes a portion of an ellipsoid of revolution having two focal point and an optical axis. A source of electromagnetic radiation is placed at one of the focal points of the first reflector to produce radiation that converges at the second focal point of the first reflector. The second focal points of the reflectors coincide. The second reflector is positioned to receive the radiation after it passes through a second focal point of the second reflector and focuses the radiation toward a target positioned at the first focal point of the second reflector.
Abstract: The present invention provides a connector assembly comprising (1) a first adapter that releasably connects to light source and transmits optical energy received from the light source along a first optical waveguide; (2) a second adapter that releasably connects to first adapter to receive and transmit optical energy along a second optical waveguide; and (3) an output optical waveguide that receives the transmitted optical energy from the second waveguide and has a proximal connector adapted to fixedly engage the second adapter. In one embodiment, the proximal connector has a slot that allows for the insertion of a clip, and the second adapter has a detente that mechanically engages the clip when it is inserted into the slot in the proximal connector. In this way, the second adapter is fixedly coupled to the proximal connector but may also rotate in relation to the output connector.
Abstract: An optical coupling element for use in large numerical aperture collecting and condensing systems. The optical coupling element includes a lens having a curved surface and a tapered light pipe. The curved surface reduces the angle of incidence of the light striking the input end of the optical coupling element such that the Fresnel reflection is greatly reduced. Electromagnetic radiation emitted by a source is collected and focused onto a target by positioning the source of electromagnetic radiation at a first focal point of a first reflector so that the source produces rays of radiation reflected from the first reflector that converge at a second focal point of the second reflector. The optical coupling element is positioned so that a center of the lens is substantially proximate with the second focal point of the second reflector and the curved surface is between the second reflector and the center.
Abstract: A temperature control system for a source of electromagnetic radiation, such as an arc lamp, in a collecting and condensing system including a first reflector having a first focal point and a first optical axis, and a second reflector having a second focal point and a second optical axis. The source may be located proximate to the first focal point of the first reflector to produce rays of radiation that reflect from the first reflector toward the second reflector and substantially converge at the second focal point. A sensor, such as a voltage or a temperature sensor, may be placed near the source, and produces an output which may be substantially proportional to an attribute of the source. A comparator compares the output to a predetermined value and produces a difference between the output and the predetermined value.
Abstract: A tipless arc tube for a high intensity discharge lamp and method of manufacture wherein the arc tube may remain open to an uncontrolled atmosphere during the step of hermetically scaling the arc tube. The novel arc tube and method obviate the need to perform any process steps within a controlled atmosphere. The pressure of the fill gas sealed within the arc tube may be controlled by controlling the temperature of the fill gas during the step of hermetically sealing the arc tube. The novel arc tube and method obviate the need to use a pump to control the fill gas pressure.
Abstract: A light emitting diode is made by a compound semiconductor in which light is emitted from an active region with a multiple quantum well structure. The active region is sandwiched by InGaAlP-based lower and upper cladding layers. Emission efficiency of the active region is improved by adding light and electron reflectors in the light emitting diode. These InGaAlP-based layers are grown epitaxially by Organometallic Vapor-Phase Epitaxy (OMVPE) on a GaAs substrate with a misorientation angle toward <111>A to improve the quality and surface morphology of the epilayer and performance in light emitting. The lower cladding layer of first conductivity type forms on a misoriented substrate with the same type of conductivity. Light transparent and current diffusion layers with a second conductivity is formed on top of the upper cladding layer for the spreading of current and expansion of the emission light.
Abstract: A fluorescent lamp containing zinc amalgam and a method of precisely controlling the amount of mercury introduced into a temperature controlled fluorescent lamp. Precise quantities of mercury may be introduced into a fluorescent lamp in the form of solid zinc amalgam pellets that are in a metastable, non-equilibrium state.
Type:
Application
Filed:
January 15, 2002
Publication date:
August 14, 2003
Applicant:
Advanced Lighting Technologies, Inc.
Inventors:
Duane A. Stafford, Steven C. Hansen, Timothy R. Brumleve
Abstract: A fiber optic illumination system with increased power handling capabilities for low melting point fiber optics uses an optical homogenizer. Homogenizers of the present invention preferably comprise a rod with polygonal cross-section. The output intensity of the optical homogenizer is substantially uniform such that the output fiber optic will not be damaged by hot spots created by non-uniform intensity light.
Abstract: An illumination device for simulating neon lighting comprising a plurality of space point light sources positioned adjacent a lateral light receiving surface of a substantially rod-like waveguide. The waveguide is made of a material that preferentially scatters light entering the light receiving surface such that the light intensity pattern exiting a lateral light emitting surface of the waveguide has a substantially uniform light intensity pattern.
Type:
Grant
Filed:
October 18, 2001
Date of Patent:
July 15, 2003
Assignee:
Light Technologies, Inc.
Inventors:
Mark Joseph Cleaver, Eric Olav Eriksson, George R. Hulse
Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.
Abstract: A safety shield assembly for an electrical apparatus comprises a bellows which is recessed into the planar surface of the apparatus which surrounds a pair of electrical blades, and which faces the planar face of a wall receptacle when the electrical apparatus is plugged into the receptacle. The safety shield assembly includes the bellows and a cavity into which the bellows is secured. In its uncompressed state, the bellows extends nearly the length of the electrical blades; in its compressed state, the bellows recedes fully into the cavity.
Abstract: An optical device for increasing the brightness of electromagnetic radiation emitted by a source by folding the electromagnetic radiation back on itself. The source of electromagnetic radiation has a first width, a first input end of a first light pipe has a second width, and a second input end of a second light pipe has a third width. An output end of the first light pipe may be reflective, while an output end of the second light pipe may be transmissive. The source is located substantially proximate to a first focal point of a first reflector to produce rays of radiation that reflect from the first reflector to a second reflector and substantially converge at a second focal point; and the input ends of the first and second light pipes are located proximate to the second focal point to collect the electromagnetic radiation.
Abstract: An efficient system for directing light comprises a light source and a generally tubular, hollow coupling device. The coupling device has an interior light-reflective surface for receiving light from the source at an inlet and transmitting it as a generally diverging light beam through an outlet. The device is shaped in accordance with non-imaging optics and increases in cross sectional area from inlet to outlet so as to reduce the angle of light reflected from the surface as it passes through the device. The foregoing system provides a discharge-based directional light source that can be of the size of a directional halogen source (e.g., an MR16 or MR 11 lamp) while substantially preserving the discharge efficiency, light-output capacity and lifetime of discharge-based sources. This results from the coupling device that provides light with good spatial uniformity in light intensity and color. Embodiments of the invention can simply split the light to multiple (e.g.
Type:
Grant
Filed:
May 5, 2000
Date of Patent:
April 29, 2003
Assignee:
Advanced Lighting Technologies, Inc.
Inventors:
Roger F. Buelow, II, John M. Davenport, Juris Sulcs
Abstract: The present invention provides a method for forming a semiconductor device with a metal substrate. The method includes providing at least one semiconductor substrate; forming at least one semiconductor layer on the semiconductor substrate; forming the metal substrate on the semiconductor substrate and then removing the semiconductor substrate. The metal substrate has advantages of high thermal and electrical conductivity that can improve the reliability and lifetime of the semiconductor device.
Abstract: A tipless arc tube for a high intensity discharge lamp and method of manufacture wherein the arc tube may remain open to an uncontrolled atmosphere during the step of hermetically scaling the arc tube. The novel arc tube and method obviate the need to perform any process steps within a controlled atmosphere. The pressure of the fill gas sealed within the arc tube may be controlled by controlling the temperature of the fill gas during the step of hermetically sealing the arc tube. The novel arc tube and method obviate the need to use a pump to control the fill gas pressure.
Abstract: The present invention provides a method for forming a semiconductor device with a metallic substrate. The method comprises providing a semiconductor substrate. At least a semiconductor layer is formed on the semiconductor substrate. A metallic electrode layer is formed on the semiconductor layer. The metallic substrate is formed on the metallic electrode layer and the semiconductor substrate is removed. The metallic substrate has advantages of high thermal and electrical conductivity, that can improve the reliability and life-time of the semiconductor device.
Abstract: The present invention provides a method for forming a semiconductor device with a metal substrate. The method includes at least one semiconductor substrate; at least one semiconductor layer is formed on the semiconductor substrate; the metal substrate is formed on the semiconductor substrate and then the semiconductor substrate is removed. The metal substrate has advantages of high thermal and electrical conductivity, that can improve the reliability and lifetime of the semiconductor device.