Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.
Abstract: A optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a string of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to string vibrations. A number of dissimilar filter approaches are included to control undesired effects of spurious light, the filter approaches may be structure-based, signal processing-based, and/or optics-based.
Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.
Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.
Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.
Abstract: A optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a string of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to string vibrations. A number of dissimilar filter approaches are included to control undesired effects of spurious light, the filter approaches may be structure-based, signal processing-based, and/or optics-based.
Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.
Abstract: An optoelectronic pickup for a musical instrument includes at least one light source which directs light to impinge a sound generating element of the musical instrument in at least one photoreceiver located to detect the reflected light, so as to generate an electrical signal that is responsive to sound generating element movement.