Abstract: In one aspect, the invention relates to an imaging probe. The imaging probe includes an elongate body having a proximal end and distal end, the elongate body adapted to enclose a portion of a slidable optical fiber, the optical fiber having a longitudinal axis; and a first optical assembly attached to a distal end of the fiber. The first optical assembly includes a beam director adapted to direct light emitted from the fiber to a plane at a predetermined angle to the longitudinal axis, a linear actuator disposed at the proximal portion of the elongated body, the actuator adapted to affect relative linear motion between the elongate body and the optical fiber; and a second optical assembly located at the distal portion of the elongate body and attached thereto, the second optical assembly comprising a reflector in optical communication with the first optical assembly, the reflector adapted to direct the light to a position distal to the elongate body.
Type:
Grant
Filed:
February 10, 2006
Date of Patent:
December 7, 2010
Assignee:
LightLab Imaging, Inc.
Inventors:
Joseph M. Schmitt, Amanda Koski, Michael Atlas, Christopher Petersen
Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
Type:
Grant
Filed:
November 12, 2007
Date of Patent:
October 12, 2010
Assignee:
LightLab Imaging, Inc.
Inventors:
Christopher Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
Abstract: In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Type:
Application
Filed:
April 22, 2010
Publication date:
October 7, 2010
Applicant:
Lightlab Imaging, Inc.
Inventors:
Desmond Adler, Stephen McCartin, Christopher Petersen, Joseph Schmitt
Abstract: In one embodiment, the invention relates to a processor based method for generating positional and other information relating to a stent in the lumen of a vessel using a computer. The method includes the steps of generating an optical coherence image data set in response to an OCT scan of a sample containing at least one stent; and identifying at least one one-dimensional local cue in the image data set relating to the position of the stent.
Abstract: A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
Type:
Application
Filed:
November 12, 2007
Publication date:
May 14, 2009
Applicant:
LightLab Imaging, Inc.
Inventors:
Christopher Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
Abstract: In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.
Abstract: In one aspect, the invention relates to a probe. The probe includes a sheath, a flexible, bi-directionally rotatable, optical subsystem positioned within the sheath, the optical subsystem comprising a transmission fiber, the optical subsystem capable of transmitting and collecting light of a predetermined range of wavelengths along a first beam having a predetermined beam size. The probe also includes an ultrasound subsystem, the ultrasound subsystem positioned within the sheath and adapted to propagate energy of a predetermined range of frequencies along a second beam having a second predetermined beam size, wherein a portion of the first and second beams overlap a region during a scan.
Type:
Application
Filed:
November 8, 2007
Publication date:
July 3, 2008
Applicant:
LightLab Imaging, Inc.
Inventors:
Joseph M. Schmitt, Christopher Petersen, Toru Ohashi, Tetsuya Nakamatsu
Abstract: In one aspect, the invention relates to an imaging probe. The imaging probe includes an elongate body having a proximal end and distal end, the elongate body adapted to enclose a portion of a slidable optical fiber, the optical fiber having a longitudinal axis; and a first optical assembly attached to a distal end of the fiber. The first optical assembly includes a beam director adapted to direct light emitted from the fiber to a plane at a predetermined angle to the longitudinal axis, a linear actuator disposed at the proximal portion of the elongated body, the actuator adapted to affect relative linear motion between the elongate body and the optical fiber; and a second optical assembly located at the distal portion of the elongate body and attached thereto, the second optical assembly comprising a reflector in optical communication with the first optical assembly, the reflector adapted to direct the light to a position distal to the elongate body.
Type:
Application
Filed:
February 10, 2006
Publication date:
October 26, 2006
Applicant:
LightLab Imaging, Inc.
Inventors:
Joseph Schmitt, Amanda Koski, Michael Atlas, Christopher Petersen