Patents Assigned to LightLab Imaging, Inc.
  • Patent number: 10140712
    Abstract: In part, the disclosure relates to methods of stent strut detection relative to a side branch region using intravascular data. In one embodiment, detecting stent struts relative to jailed side branches is performed using a scan line-based peak analysis. In one embodiment, false positive determinations relating to stent struts are analyzed using a model strut.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 27, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventor: Sonal Ambwani
  • Publication number: 20180306569
    Abstract: In part, aspects of the invention relate to methods, apparatus, and systems for intensity and/or pattern line noise reduction in a data collection system such as an optical coherence tomography system that uses an electromagnetic radiation source and interferometric principles. In one embodiment, the noise is intensity noise or line pattern noise and the source is a laser such as a swept laser. One or more attenuators responsive to one or more control signals can be used in conjunction with an analog or digital feedback network in one embodiment.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Victor Grinberg
  • Patent number: 10109058
    Abstract: The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: October 23, 2018
    Assignee: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin, James G. Peterson, Satish Kaveti, Joel M. Friedman
  • Patent number: 10089755
    Abstract: In part, the disclosure relates to methods of guidewire detection in intravascular data sets such as scan lines, frames, images and combinations thereof. Methods of generating one or more indicia of a guidewire in a representation of blood vessel are also features of the disclosure. A carpet view is generated in one embodiment and regions of relatively higher contrast are detected as candidate guidewire regions. In one embodiment, the disclosure relates to selective removal of guidewire segments from a set of intravascular data and the display of a representation of a blood vessel via a user interface. Representations of a guidewire can be toggled on and off in one embodiment.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 2, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Christopher E. Griffin, Sonal Ambwani, Satish Kaveti
  • Publication number: 20180275622
    Abstract: A data collection system controller that includes a housing such as a cover. The housing includes a user facing section and a support facing section defining a hole. The controller also includes a first input device adjacent the user facing section and a second input device. The second input device includes a knob comprising a third input device and a rotatable shaft extending through the hole and partially disposed within the knob. In one embodiment, the second input device is an XYZ joystick with a button. In one embodiment, the joystick and the first input device are angled relative to each other on either side of an elbow joint. In part, the invention relates to a method of controlling the display of image data obtained with respect to a blood vessel.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Desmond Christopher Adler, Joshua M. Gomes, David Winston, Susan Moynihan
  • Publication number: 20180225830
    Abstract: In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Desmond Adler
  • Patent number: 10028725
    Abstract: The invention provides a frictional torque limiter assembly for an imaging core spinning in a patient's body. The torque limiter assembly torsionally isolates the imaging core from a motor that spins the imaging core. An interference fit between a slitted drive tube and a spacer tube acts as a clutch that allows a spinning imaging probe to slow or stop relative to the motor until the motor is stopped, thereby preventing an unsafe condition.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 24, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventor: Christopher Petroff
  • Publication number: 20180192957
    Abstract: A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Chenyang Xu
  • Publication number: 20180192983
    Abstract: In part, the invention relates to processing, tracking and registering angiography images and elements in such images relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT). Registration between such imaging modalities is facilitated by tracking of a marker of the intravascular imaging probe performed on the angiography images obtained during a pullback. Further, detecting and tracking vessel centerlines is used to perform a continuous registration between OCT and angiography images in one embodiment.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Lorina Dascal, Itai Winkler, Stavit Cohen, Amit Cohen, Desmond C. Adler
  • Publication number: 20180177404
    Abstract: In part, the disclosure relates to a lens assembly. The lens assembly can be used to direct light for sensing and imaging. In one embodiment, the lens assembly is a component of an intravascular data collection probe such as an optical coherence tomography probe. The lens assembly can include an optical fiber having a first diameter and a gradient index lens that includes a rod having a length L. The rod can include a substantial planar end and a polished end. The rod can include a longitudinal axis and a second diameter. The second diameter is greater than the first diameter in one embodiment. The substantially planar end is optically coupled to an endface of the optical fiber. The refractive index changes along the length L of the rod.
    Type: Application
    Filed: June 23, 2016
    Publication date: June 28, 2018
    Applicant: LightLab Imaging, Inc.
    Inventor: Yu Liu
  • Patent number: 10006753
    Abstract: In part, aspects of the invention relate to methods, apparatus, and systems for intensity and/or pattern line noise reduction in a data collection system such as an optical coherence tomography system that uses an electromagnetic radiation source and interferometric principles. In one embodiment, the noise is intensity noise or line pattern noise and the source is a laser such as a swept laser. One or more attenuators responsive to one or more control signals can be used in conjunction with an analog or digital feedback network in one embodiment.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 26, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Victor Grinberg
  • Patent number: 9989945
    Abstract: A data collection system controller that includes a housing such as a cover. The housing includes a user facing section and a support facing section defining a hole. The controller also includes a first input device adjacent the user facing section and a second input device. The second input device includes a knob comprising a third input device and a rotatable shaft extending through the hole and partially disposed within the knob. In one embodiment, the second input device is an XYZ joystick with a button. In one embodiment, the joystick and the first input device are angled relative to each other on either side of an elbow joint. In part, the invention relates to a method of controlling the display of image data obtained with respect to a blood vessel.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 5, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Desmond Christopher Adler, Joshua M. Gomes, David Winston, Susan Moynihan
  • Patent number: 9983356
    Abstract: In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (?) or substantially undelayed.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: May 29, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Desmond Adler
  • Patent number: 9940723
    Abstract: In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: April 10, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Ajay Gopinath, Desmond Adler
  • Publication number: 20180085170
    Abstract: In part, the disclosure relates to determining a stent deployment location and other parameters using blood vessel data. Stent deployment can be planned such that the amount of blood flow restored from stenting relative to an unstented vessel increases one or more metrics. An end user can specify one or more stent lengths, including a range of stent lengths. In turn, diagnostic tools can generate candidate virtual stents having lengths within the specified range suitable for placement relative to a vessel representation. Blood vessel distance values such as blood vessel diameter, radius, area values, chord values, or other cross-sectional, etc. its length are used to identify stent landing zones. These tools can use or supplement angiography data and/or be co-registered therewith. Optical imaging, ultrasound, angiography or other imaging modalities are used to generate the blood vessel data.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 29, 2018
    Applicant: LightLab Imaging, Inc.
    Inventor: Ajay Gopinath
  • Publication number: 20180085095
    Abstract: A method for bringing an IVUS and an OCT image into register. In one embodiment, the method includes obtaining an IVUS image of an area of a lumen; obtaining an OCT image of the same area of the lumen; determining the same asymmetry in each of the IVUS and OCT images; and overlaying the IVUS and OCT images and rotating them with respect to one another until the asymmetry in each of the IVUS and OCT images are in register, and determining the angle of rotation that resulted in the registration. In another aspect, the invention relates to a probe for OCT and IVUS imaging. In one embodiment, the probe includes a sheath having a first end and a second end defining a lumen; a marker that is opaque to light and ultrasound located between the first end and second end; and an IVUS/OCT probe head positioned within the sheath.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Christopher Hutchins, Alexander Ship
  • Patent number: 9907527
    Abstract: In part, the invention relates to processing, tracking and registering angiography images and elements in such images relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT). Registration between such imaging modalities is facilitated by tracking of a marker of the intravascular imaging probe performed on the angiography images obtained during a pullback. Further, detecting and tracking vessel centerlines is used to perform a continuous registration between OCT and angiography images in one embodiment.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 6, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Lorina Dascal, Itai Winkler, Stavit Cohen, Amit Cohen, Desmond C. Adler
  • Patent number: 9864140
    Abstract: In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 9, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Desmond Adler, Stephen McCartin, Christopher Petersen
  • Publication number: 20180003482
    Abstract: In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 4, 2018
    Applicant: LightLab Imaging, Inc.
    Inventor: Joseph M. Schmitt
  • Patent number: 9833221
    Abstract: A method for bringing an IVUS and an OCT image into register. In one embodiment, the method includes obtaining an IVUS image of an area of a lumen; obtaining an OCT image of the same area of the lumen; determining the same asymmetry in each of the IVUS and OCT images; and overlaying the IVUS and OCT images and rotating them with respect to one another until the asymmetry in each of the IVUS and OCT images are in register, and determining the angle of rotation that resulted in the registration. In another aspect, the invention relates to a probe for OCT and IVUS imaging. In one embodiment, the probe includes a sheath having a first end and a second end defining a lumen; a marker that is opaque to light and ultrasound located between the first end and second end; and an IVUS/OCT probe head positioned within the sheath.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 5, 2017
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Christopher Hutchins, Alexander Ship