Patents Assigned to Lightwire, Inc.
  • Publication number: 20120237160
    Abstract: A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: LIGHTWIRE, INC.
    Inventors: Kalpendu Shastri, Bipin Dama, Mark Webster, David Piede
  • Publication number: 20120230626
    Abstract: An optical modulator is configured to include multiple modulating sections formed along each arm and create a unary-encoded optical output signal by driving the number of sections required to represent the data value being transmitted (e.g., three sections driven to represent the data value “3”, four sections driven to represent the data value “4”). An auxiliary modulating section, isolated from the optical signal path, is included for creating a path for current flow in situations where only an odd number of modulating sections are required to represent the data. The activation of the auxiliary modulation section minimizes the current imbalance that would otherwise be present along a common node of the arrangement.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 13, 2012
    Applicant: LIGHTWIRE, INC.
    Inventors: Peter C. Metz, Bipin Dama, Kalpendu Shastri
  • Publication number: 20120155799
    Abstract: A silicon-based opto-electronic circuit is formed to exhibit reduced polarization-dependent loss by strategically placing the photodetecting device as close as possible to the entry point of the optical signal into the opto-electronic circuit arrangement. While the incoming optical signal will include both TE and TM modes, by minimizing the length of the optical waveguide path along which the signal must propagate before reaching a photodetector, the attenuation associated with TM mode signal will be negligible.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Applicant: Lightwire, Inc.
    Inventors: Kalpendu Shastri, Raymond Nering
  • Patent number: 8121450
    Abstract: A plasma-based etching process is used to specifically shape the endface of an optical substrate supporting an optical waveguide into a contoured facet which will improve coupling efficiency between the waveguide and a free space optical signal. The ability to use standard photolithographic techniques to pattern and etch the optical endface facet allows for virtually any desired facet geometry to be formed—and replicated across the surface of a wafer for the entire group of assemblies being fabricated. A lens may be etched into the endface using a properly-defined photolithographic mask, with the focal point of the lens selected with respect to the parameters of the optical waveguide and the propagating free space signal. Alternatively, an angled facet may be formed along the endface, with the angle sufficient to re-direct reflected/scattered signals away from the optical axis.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 21, 2012
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Vipulkumar Patel, Mary Nadeau, Prakash Gothoskar, David Piede
  • Publication number: 20110317958
    Abstract: An silicon-on-insulator (SOI)-based photonics platform is formed to including a venting structure for encapsulating the active and passive optical components formed on the SOI-based photonics platform. The venting structure is used to allow for the encapsulated components to “breathe” such that water vapor and gasses will pass through the package and not condensate on any of the encapsulated optical surfaces. The venting structure is configured to also to prevent dust, liquids and other particulate material from entering the package.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 29, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, John Fangman, Duane Stackhouse, Craig Young, David Piede, Vipulkumar Patel
  • Patent number: 8031991
    Abstract: An optical coupler is formed of a low index material and exhibits a mode field diameter suitable to provide efficient coupling between a free space optical signal (of large mode field diameter) and a single mode high index waveguide formed on an optical substrate. One embodiment comprises an antiresonant reflecting optical waveguide (ARROW) structure in conjunction with an embedded (high index) nanotaper coupling waveguide. Another embodiment utilizes a low index waveguide structure disposed in an overlapped arrangement with a high index nanotaper coupling waveguide. The low index waveguide itself includes a tapered region that overlies the nanotaper coupling waveguide to facilitate the transfer of the optical energy from the low index waveguide into an associated single mode high index waveguide. Methods of forming these devices using CMOS processes are also disclosed.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: October 4, 2011
    Assignee: Lightwire Inc.
    Inventors: Mark Webster, Vipulkumar Patel
  • Publication number: 20110222812
    Abstract: A high speed silicon-based optical modulator with control of the dopant profiles in the body and gate regions of the device reduces the series resistance of the structure without incurring substantial optical power loss. That is, the use of increased dopant values in areas beyond the active region will allow for the series resistance to be reduced (and thus increase the modulating speed of the device) without incurring too large a penalty in signal loss. The dopant profiles within the gate and body regions are tailored to exhibit an intermediate value between the high dopant concentration in the contact areas and the low dopant concentration in the carrier integration window area.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mark Webster, Vipulkumar Patel, Prakash Gothoskar, David Piede
  • Publication number: 20110222813
    Abstract: A semiconductor-based optical modulator is presented that includes a separate phase control section to adjust the amount of chirp present in the modulated output signal. At least one section is added to the modulator configuration and driven to create a pure “phase” signal that will is added to the output signal and modify the ei? term inherent in the modulation function. The phase modulation control section may be located within the modulator itself (with one segment on each arm, driven by the same input signal), or may be disposed “outside” of the modulator on either the input waveguiding section or the output waveguiding section. The phase control section may be formed to comprise multiple segments (of different lengths), with the overall phase added to the propagating signal controlled by selecting the different segments to be energized to impart a phase delay to a signal propagating through the energized section(s).
    Type: Application
    Filed: February 23, 2011
    Publication date: September 15, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mark Webster, Kalpendu Shastri
  • Publication number: 20110221019
    Abstract: A planar, waveguide-based silicon Schottky barrier photodetector includes a third terminal in the form of a field plate to improve the responsivity of the detector. Preferably, a silicide used for the detection region is formed during a processing step where other silicide contact regions are being formed. The field plate is preferably formed as part of the first or second layer of CMOS metallization and is controlled by an applied voltage to modify the electric field in the vicinity of the detector's silicide layer. By modifying the electric field, the responsivity of the device is “tuned” so as to adjust the momentum of “hot” carriers (electrons or holes, depending on the conductivity of the silicon) with respect to the Schottky barrier of the device.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 15, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Vipulkumar Patel, Prakash Gothoskar, Mark Webster, Christopher J. Lang
  • Publication number: 20110216997
    Abstract: A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 8, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski
  • Publication number: 20110127633
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Patent number: 7941023
    Abstract: A low loss optical waveguiding structure for silicon-on-insulator (SOI)-based arrangements utilizes a tri-material configuration including a rib/strip waveguide formed of a material with a refractive index less than silicon, but greater than the refractive index of the underlying insulating material. In one arrangement, silicon nitride may be used. The index mismatch between the silicon surface layer (the SOI layer) and the rib/strip waveguide results in a majority of the optical energy remaining within the SOI layer, thus reducing scattering losses from the rib/strip structure (while the rib/strip allows for guiding along a desired signal path to be followed). Further, since silicon nitride is an amorphous material without a grain structure, this will also reduce scattering losses. Advantageously, the use of silicon nitride allows for conventional CMOS fabrication processes to be used in forming both passive and active devices.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: May 10, 2011
    Assignee: Lightwire Inc.
    Inventors: Vipulkumar Patel, David Piede, Margaret Ghiron, Prakash Gothoskar
  • Patent number: 7936448
    Abstract: A compact, integrated LIDAR system utilizes SOI-based opto-electronic components to provide for lower cost and higher reliability as compared to current LIDAR systems. Preferably, an SOI-based LIDAR transmitter and an SOI-based LIDAR receiver (both optical components and electrical components) are integrated within a single module. The various optical and electrical components are formed utilizing portions of the SOI layer and applying well-known CMOS fabrication processes (e.g., patterning, etching, doping), including the formation of additional layer(s) over the SOI layer to provide the required devices. A laser source itself is attached to the SOI arrangement and coupled through an integrated modulation device (such as a Mach-Zehnder interferometer, i.e., MZI) to provide the scanning laser output signal (the scan controlled by, for example, an electrical (encoder) input to the input to the MZI).
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: May 3, 2011
    Assignee: Lightwire Inc.
    Inventors: Vijay Albuquerque, David Plede
  • Patent number: 7929814
    Abstract: A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: April 19, 2011
    Assignee: Lightwire, Inc.
    Inventors: Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski
  • Patent number: 7796842
    Abstract: An AC-coupled differential drive circuit for an optical modulator is utilized, where a common “node” is defined between top (or bottom) plates of the modulator arms themselves (the “arms” of a modulator taking the form of MOS capacitors). A low pass filter is disposed between the differential driver output and the modulator's common node to provide the desired AC coupling by filtering out the DC bias voltage of the driver circuit itself without the need for a separate, external AC coupling capacitor. An independent, adjustable DC potential can then be applied to the common node, and will appear in a balanced manner across each arm of the modulator to provide the desired DC bias for the modulator independent of the DC bias of the driver circuit.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: September 14, 2010
    Assignee: Lightwire, Inc.
    Inventor: Paulius Mindaugas Mosinskis
  • Patent number: 7706644
    Abstract: One or more nanotaper coupling waveguides formed within an optical substrate allows for straightforward, reproducible offset launch conditions to be achieved between an incoming signal and the core region of a multimode fiber (which may be disposed along an alignment fixture formed in the optical substrate), fiber array or other multimode waveguiding structure. Offset launching of a single mode signal into a multimode fiber couples the signal into favorable spatial modes which reduce the presence of differential mode dispersion along the fiber. This approach to providing single mode signal coupling into legacy multimode fiber is considered to be an improvement over the prior art which required the use of an interface element between a single mode fiber and multimode fiber, limiting the number of propagating signals and applications for the legacy multimode fiber. An optical switch may be used to select the specific nanotaper(s) for coupling into the multimode fiber.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 27, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Prakash Gothoskar, Vipulkumar Patel, David Piede
  • Patent number: 7701985
    Abstract: A silicon-on-insulator (SOI)-based tunable laser is formed to include the gain medium (such as a semiconductor optical amplifier) disposed within a cavity formed within the SOI substrate. A tunable wavelength reflecting element and associated phase matching element are formed on the surface of the SOI structure, with optical waveguides formed in the surface SOI layer providing the communication between these components. The tunable wavelength element is controlled to adjust the optical wavelength. Separate discrete lensing elements may be disposed in the cavity with the gain medium, providing efficient coupling of the optical signal into the SOI waveguides. Alternatively, the gain medium itself may be formed to include spot converting tapers on its endfaces, the tapers used to provide mode matching into the associated optical waveguides.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 20, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, David Piede, Prakash Gothoskar
  • Patent number: 7697793
    Abstract: A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which hen transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 13, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Vipulkumar Patel, Prakash Gothoskar
  • Patent number: 7657130
    Abstract: A silicon-insulator-silicon capacitive (SISCAP) optical modulator is configured to provide analog operation for applications which previously required the use of relatively large, power-consuming and expensive lithium niobate devices. An MZI-based SISCAP modulator (preferably a balanced arrangement with a SISCAP device on each arm) is responsive to an incoming high frequency electrical signal and is biased in a region where the capacitance of the device is essentially constant and the transform function of the MZI is linear.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: February 2, 2010
    Assignee: Lightwire, Inc.
    Inventors: Kalpendu Shastri, Prakash Gothoskar, Vipulkumar Patel, David Piede, Mark Webster
  • Patent number: 7587106
    Abstract: An arrangement for providing optical crossovers between waveguides formed in an SOI-based structure utilize a patterned geometry in the SOI structure that is selected to reduce the effects of crosstalk in the area where the signals overlap. Preferably, the optical signals are fixed to propagate along orthogonal directions (or are of different wavelengths) to minimize the effects of crosstalk. The geometry of the SOI structure is patterned to include predetermined tapers and/or reflecting surfaces to direct/shape the propagating optical signals. The patterned waveguide regions within the optical crossover region may be formed to include overlying polysilicon segments to further shape the propagating beams and improve the coupling efficiency of the crossover arrangement.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 8, 2009
    Assignee: Lightwire, Inc.
    Inventors: David Piede, Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Soham Pathak, Kalpendu Shastri, Katherine A. Yanushefski