Patents Assigned to Lightwire, Inc.
-
Publication number: 20120155799Abstract: A silicon-based opto-electronic circuit is formed to exhibit reduced polarization-dependent loss by strategically placing the photodetecting device as close as possible to the entry point of the optical signal into the opto-electronic circuit arrangement. While the incoming optical signal will include both TE and TM modes, by minimizing the length of the optical waveguide path along which the signal must propagate before reaching a photodetector, the attenuation associated with TM mode signal will be negligible.Type: ApplicationFiled: December 13, 2011Publication date: June 21, 2012Applicant: Lightwire, Inc.Inventors: Kalpendu Shastri, Raymond Nering
-
Patent number: 8121450Abstract: A plasma-based etching process is used to specifically shape the endface of an optical substrate supporting an optical waveguide into a contoured facet which will improve coupling efficiency between the waveguide and a free space optical signal. The ability to use standard photolithographic techniques to pattern and etch the optical endface facet allows for virtually any desired facet geometry to be formed—and replicated across the surface of a wafer for the entire group of assemblies being fabricated. A lens may be etched into the endface using a properly-defined photolithographic mask, with the focal point of the lens selected with respect to the parameters of the optical waveguide and the propagating free space signal. Alternatively, an angled facet may be formed along the endface, with the angle sufficient to re-direct reflected/scattered signals away from the optical axis.Type: GrantFiled: December 11, 2008Date of Patent: February 21, 2012Assignee: Lightwire, Inc.Inventors: Mark Webster, Vipulkumar Patel, Mary Nadeau, Prakash Gothoskar, David Piede
-
Patent number: 8031991Abstract: An optical coupler is formed of a low index material and exhibits a mode field diameter suitable to provide efficient coupling between a free space optical signal (of large mode field diameter) and a single mode high index waveguide formed on an optical substrate. One embodiment comprises an antiresonant reflecting optical waveguide (ARROW) structure in conjunction with an embedded (high index) nanotaper coupling waveguide. Another embodiment utilizes a low index waveguide structure disposed in an overlapped arrangement with a high index nanotaper coupling waveguide. The low index waveguide itself includes a tapered region that overlies the nanotaper coupling waveguide to facilitate the transfer of the optical energy from the low index waveguide into an associated single mode high index waveguide. Methods of forming these devices using CMOS processes are also disclosed.Type: GrantFiled: May 27, 2009Date of Patent: October 4, 2011Assignee: Lightwire Inc.Inventors: Mark Webster, Vipulkumar Patel
-
Patent number: 7941023Abstract: A low loss optical waveguiding structure for silicon-on-insulator (SOI)-based arrangements utilizes a tri-material configuration including a rib/strip waveguide formed of a material with a refractive index less than silicon, but greater than the refractive index of the underlying insulating material. In one arrangement, silicon nitride may be used. The index mismatch between the silicon surface layer (the SOI layer) and the rib/strip waveguide results in a majority of the optical energy remaining within the SOI layer, thus reducing scattering losses from the rib/strip structure (while the rib/strip allows for guiding along a desired signal path to be followed). Further, since silicon nitride is an amorphous material without a grain structure, this will also reduce scattering losses. Advantageously, the use of silicon nitride allows for conventional CMOS fabrication processes to be used in forming both passive and active devices.Type: GrantFiled: August 3, 2007Date of Patent: May 10, 2011Assignee: Lightwire Inc.Inventors: Vipulkumar Patel, David Piede, Margaret Ghiron, Prakash Gothoskar
-
Patent number: 7936448Abstract: A compact, integrated LIDAR system utilizes SOI-based opto-electronic components to provide for lower cost and higher reliability as compared to current LIDAR systems. Preferably, an SOI-based LIDAR transmitter and an SOI-based LIDAR receiver (both optical components and electrical components) are integrated within a single module. The various optical and electrical components are formed utilizing portions of the SOI layer and applying well-known CMOS fabrication processes (e.g., patterning, etching, doping), including the formation of additional layer(s) over the SOI layer to provide the required devices. A laser source itself is attached to the SOI arrangement and coupled through an integrated modulation device (such as a Mach-Zehnder interferometer, i.e., MZI) to provide the scanning laser output signal (the scan controlled by, for example, an electrical (encoder) input to the input to the MZI).Type: GrantFiled: January 24, 2007Date of Patent: May 3, 2011Assignee: Lightwire Inc.Inventors: Vijay Albuquerque, David Plede
-
Patent number: 7929814Abstract: A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.Type: GrantFiled: April 23, 2004Date of Patent: April 19, 2011Assignee: Lightwire, Inc.Inventors: Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski
-
Patent number: 7796842Abstract: An AC-coupled differential drive circuit for an optical modulator is utilized, where a common “node” is defined between top (or bottom) plates of the modulator arms themselves (the “arms” of a modulator taking the form of MOS capacitors). A low pass filter is disposed between the differential driver output and the modulator's common node to provide the desired AC coupling by filtering out the DC bias voltage of the driver circuit itself without the need for a separate, external AC coupling capacitor. An independent, adjustable DC potential can then be applied to the common node, and will appear in a balanced manner across each arm of the modulator to provide the desired DC bias for the modulator independent of the DC bias of the driver circuit.Type: GrantFiled: October 5, 2007Date of Patent: September 14, 2010Assignee: Lightwire, Inc.Inventor: Paulius Mindaugas Mosinskis
-
Patent number: 7706644Abstract: One or more nanotaper coupling waveguides formed within an optical substrate allows for straightforward, reproducible offset launch conditions to be achieved between an incoming signal and the core region of a multimode fiber (which may be disposed along an alignment fixture formed in the optical substrate), fiber array or other multimode waveguiding structure. Offset launching of a single mode signal into a multimode fiber couples the signal into favorable spatial modes which reduce the presence of differential mode dispersion along the fiber. This approach to providing single mode signal coupling into legacy multimode fiber is considered to be an improvement over the prior art which required the use of an interface element between a single mode fiber and multimode fiber, limiting the number of propagating signals and applications for the legacy multimode fiber. An optical switch may be used to select the specific nanotaper(s) for coupling into the multimode fiber.Type: GrantFiled: July 15, 2008Date of Patent: April 27, 2010Assignee: Lightwire, Inc.Inventors: Mark Webster, Prakash Gothoskar, Vipulkumar Patel, David Piede
-
Patent number: 7701985Abstract: A silicon-on-insulator (SOI)-based tunable laser is formed to include the gain medium (such as a semiconductor optical amplifier) disposed within a cavity formed within the SOI substrate. A tunable wavelength reflecting element and associated phase matching element are formed on the surface of the SOI structure, with optical waveguides formed in the surface SOI layer providing the communication between these components. The tunable wavelength element is controlled to adjust the optical wavelength. Separate discrete lensing elements may be disposed in the cavity with the gain medium, providing efficient coupling of the optical signal into the SOI waveguides. Alternatively, the gain medium itself may be formed to include spot converting tapers on its endfaces, the tapers used to provide mode matching into the associated optical waveguides.Type: GrantFiled: November 6, 2008Date of Patent: April 20, 2010Assignee: Lightwire, Inc.Inventors: Mark Webster, David Piede, Prakash Gothoskar
-
Patent number: 7697793Abstract: A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which hen transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.Type: GrantFiled: October 29, 2008Date of Patent: April 13, 2010Assignee: Lightwire, Inc.Inventors: Mark Webster, Vipulkumar Patel, Prakash Gothoskar
-
Patent number: 7657130Abstract: A silicon-insulator-silicon capacitive (SISCAP) optical modulator is configured to provide analog operation for applications which previously required the use of relatively large, power-consuming and expensive lithium niobate devices. An MZI-based SISCAP modulator (preferably a balanced arrangement with a SISCAP device on each arm) is responsive to an incoming high frequency electrical signal and is biased in a region where the capacitance of the device is essentially constant and the transform function of the MZI is linear.Type: GrantFiled: October 8, 2008Date of Patent: February 2, 2010Assignee: Lightwire, Inc.Inventors: Kalpendu Shastri, Prakash Gothoskar, Vipulkumar Patel, David Piede, Mark Webster
-
Patent number: 7587106Abstract: An arrangement for providing optical crossovers between waveguides formed in an SOI-based structure utilize a patterned geometry in the SOI structure that is selected to reduce the effects of crosstalk in the area where the signals overlap. Preferably, the optical signals are fixed to propagate along orthogonal directions (or are of different wavelengths) to minimize the effects of crosstalk. The geometry of the SOI structure is patterned to include predetermined tapers and/or reflecting surfaces to direct/shape the propagating optical signals. The patterned waveguide regions within the optical crossover region may be formed to include overlying polysilicon segments to further shape the propagating beams and improve the coupling efficiency of the crossover arrangement.Type: GrantFiled: June 12, 2008Date of Patent: September 8, 2009Assignee: Lightwire, Inc.Inventors: David Piede, Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Soham Pathak, Kalpendu Shastri, Katherine A. Yanushefski
-
Patent number: 7570889Abstract: An electronic dispersion compensation (EDC) arrangement for a multi-channel optical receive utilizes a time division technique to “share” a common adaptive algorithm block between a plurality of N separate channels. The algorithm block embodies a specific algorithm associated with correcting/updating tap weights for the delay lines forming the equalizing elements, and a time slot assignment element is used in conjunction with the algorithm block to control the access of the various channels to the algorithm block. In situations where certain channels experience a greater degree of dispersion than others, the time slot assignment element may be configured to allot a greater number of time slots to the affected channels.Type: GrantFiled: April 27, 2006Date of Patent: August 4, 2009Assignee: Lightwire, Inc.Inventors: Kalpendu Shastri, Bipin Dama, David Piede
-
Patent number: 7567094Abstract: A CMOS driver circuit is configured to provide a tri-state condition after a predetermined number of like-valued data bits have been transmitted, reducing the presence of intersymbol interference (ISI) along a transmission channel. In situations where the transmission channel is bandwidth-limited, the use of the tri-stating technique allows for the complete transition to the supply rails during the given bit period.Type: GrantFiled: May 25, 2007Date of Patent: July 28, 2009Assignee: Lightwire Inc.Inventor: Kalpendu Shastri
-
Patent number: 7556440Abstract: A unitary optical receiver assembly is formed to include a V-groove passively aligned with a first aspheric lens (the lens formed along a surface perpendicular to the V-groove). An optical fiber is disposed along the V-groove and is used to bring the received optical signal into the unitary assembly. Upon passing through the first aspheric lens, the received optical signal will intercept a 45° turning mirror wall that directs the signal downward, through a second aspheric lens (also molded in the unitary assembly), and then into a photosensitive device. Advantageously, the photosensitive device is disposed in passive alignment with the second aspheric lens, allowing for a received signal to be coupled from an incoming optical fiber to a photosensitive device without needing any type of active alignment therebetween.Type: GrantFiled: December 20, 2007Date of Patent: July 7, 2009Assignee: Lightwire Inc.Inventors: Dincer Birincioglu, Rajesh Dighde, Mary Nadeau, David Piede, Wenhong Qin
-
Patent number: 7539358Abstract: The surface silicon layer (SOI layer) of an SOI-based optical modulator is processed to exhibit a corrugated surface along the direction of optical signal propagation. The required dielectric layer (i.e., relatively thin “gate oxide”) is formed over the corrugated structure in a manner that preserves the corrugated topology. A second silicon layer, required to form the modulator structure, is then formed over the gate oxide in a manner that follows the corrugated topology, where the overlapping portion of the corrugated SOI layer, gate oxide and second silicon layer defines the active region of the modulator. The utilization of the corrugated active region increases the area over which optical field intensity will overlap with the free carrier modulation region, improving the modulator's efficiency.Type: GrantFiled: May 31, 2007Date of Patent: May 26, 2009Assignee: Lightwire Inc.Inventors: Robert Keith Montgomery, Vipulkumar Patel
-
Patent number: 7515778Abstract: An optical modulator is formed to include an adjustable drive arrangement for dynamically adjusting the effective length of the optical signals path(s) within the modulator. Each modulator arm is partitioned into a plurality of segments, with each segment coupled to a separate electrical signal driver. Therefore, the effective length of each modulator arm will be a function of the number of drivers that are activated for each arm at any given point in time. A feedback arrangement may be used with the plurality of drivers to dynamically adjust the operation of the modulator by measuring the extinction ratio as a function of optical power, turning “on” or “off” individual drivers accordingly.Type: GrantFiled: October 9, 2007Date of Patent: April 7, 2009Assignee: Lightwire, Inc.Inventors: Paulius Mindaugas Mosinskis, Robert Keith Montgomery, Prakash Gothoskar
-
Patent number: 7499620Abstract: A method and structure for reducing optical signal loss in a silicon waveguide formed within a silicon-on-insulator (SOI) structure uses CMOS processing techniques to round the edges/corners of the silicon material along the extent of the waveguiding region. One exemplary set of processes utilizes an additional, sacrificial silicon layer that is subsequently etched to form silicon sidewall fillets along the optical waveguide, the fillets thus “rounding” the edges of the waveguide. Alternatively, the sacrificial silicon layer can be oxidized to consume a portion of the underlying silicon waveguide layer, also rounding the edges. Instead of using a sacrificial silicon layer, an oxidation-resistant layer may be patterned over a blanket silicon layer, the pattern defined to protect the optical waveguiding region.Type: GrantFiled: September 6, 2006Date of Patent: March 3, 2009Assignee: Lightwire, Inc.Inventors: Vipulkumar Kantilal Patel, Prakash Gothoskar, Robert Keith Montgomery, Margaret Ghiron
-
Patent number: 7483597Abstract: An optical modulator is formed to include a plurality of separate electrodes disposed along one arm, the electrodes having different lengths and driven with different signals to provide for multi-level signaling (e.g., PAM-4 signaling). By using separate drivers to energize the different sections, the number of sections energized at a given point in time will define the net phase shift introduced to the optical signal. The total length of the combined modulator sections is associated with a ? phase shift (180°). Each section is driven by either a digital “one” or “zero”, so as to create the multi-level modulation. An essentially equal change in power between adjacent transmitted symbols is accomplished by properly adjusting the lengths of each individual section.Type: GrantFiled: October 17, 2007Date of Patent: January 27, 2009Assignee: Lightwire, Inc.Inventors: Kalpendu Shastri, Bipin Dama