Patents Assigned to Lion Semiconductor Inc.
  • Publication number: 20240146194
    Abstract: This application relates to methods and apparatus for DC voltage conversion. A DC converter (100) is described, with a charge pump circuit comprising a plurality of charge pump stages (1401, 1402-2, 1402-2) each charge pump stage comprising connections for respective first and second capacitors for that stage (C1A, C1B; C2A, C2B; C3A, C3B). The charge pump also has a switch network, wherein the switch network comprises, between each successive stage, four switching paths (S7AA, S7AB, S7Ba, S7BB; S6AA, S6AB, S6Ba, S6BB) for separately connecting a respective first electrode of each of the first and second capacitors of one stage to a first electrode either of the first and second capacitors of the preceding stage, so that the relevant capacitor of the one stage can be charged by the relevant capacitor of the preceding stage.
    Type: Application
    Filed: March 24, 2022
    Publication date: May 2, 2024
    Applicant: Lion Semiconductor Inc.
    Inventor: Hans MEYVAERT
  • Patent number: 11581806
    Abstract: A circuit comprising: a first switch having: first side (FS) connected to first capacitor's second side (1C2S); and second side (SS) connected to reference node (RN); a second switch having: FS connected to second voltage node (2VN); and SS connected to 1C2S; a third switch having: FS connected to the first capacitor's first side (1C1S); and SS connected to 2VN; a fourth switch having: FS connected to a third voltage node (3VN); and SS connected to 1C1S; a fifth switch having: FS connected to second capacitor's second side (2C2S); and SS connected to RN; a sixth switch having: FS connected to 3VN; and SS connected to 2C2S; a seventh switch having: FS connected to the second capacitor's first side (2C1S); and SS connected to 3VN; and an eighth switch having: FS connected to first voltage node; and SS connected to 2C1S.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 14, 2023
    Assignee: Lion Semiconductor Inc.
    Inventor: Hans Meyvaert
  • Patent number: 11515784
    Abstract: A circuit comprising: a first switch having: a first side connected to a first node; and a second side connected to a second capacitor's first side (2C1S); a second switch having: a first side connected to a second capacitor's second side (2C2S); and a second side connected to a first capacitor's first side (1C1S); a third switch having: a first side connected to a first capacitor's second side (1C2S); and a second side connected to a second node (2VN); a fourth switch having: a first side connected to 2C2S; and a second side connected to a third node (3VN); a fifth switch having: a first side connected to 2C1S; and a second side connected to 1C1S; a sixth switch having: a first side connected to 1C2S; and a second side connected to 3VN; a seventh switch having: a first side connected to 1C1S; and a second side connected to 2VN.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Lion Semiconductor Inc.
    Inventor: Hans Meyvaert
  • Patent number: 11342844
    Abstract: Circuit comprising: a first switch (1S) having: a first side (FS) connected to an input node (IN); and a second side (SS); a first capacitor (FC) having: FS connected to SS of 1S; and SS; a second switch having: FS connected to SS of FC; and SS connected to a voltage level node; a third switch having: FS connected to SS of FC; and SS connected to a voltage output node; a fourth switch (4S) having: FS connected to IN; and SS; a second capacitor (SC) having: FS connected to SS of 4S; and SS; a fifth switch having: FS connected to SS of SC; and SS connected to the voltage level node; a sixth switch having: FS connected to SS of SC; and SS connected to the voltage output node; a first connection node connected to FS of FC; and a second connection node connected to FS of SC.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: May 24, 2022
    Assignee: Lion Semiconductor Inc.
    Inventor: Hans Meyvaert
  • Patent number: 10833579
    Abstract: A switching capacitor regulator, comprising: a switching capacitor configured to switch between a first state and a second state, wherein, in the first state, a first node of the switching capacitor is coupled to a second terminal, and a second node of the switching capacitor is coupled to a fixed voltage level, and wherein, in the second state, the first node is coupled to a first terminal, and the second node is coupled to the second terminal; a power switch configured to couple the second node to the second terminal when the switching capacitor is in the second state; and a flying inverter configured to control the power switch, wherein the flying inverter has a positive power terminal and a negative power terminal, wherein the positive power terminal is coupled to the first node, and wherein the negative power terminal is coupled to the second node.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: November 10, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Alessandro Angelo Puggelli, Zhipeng Li, Thomas Li
  • Patent number: 10770972
    Abstract: The present disclosure provides an asymmetric switching capacitor regulator that is capable of providing an output voltage, covering a wide voltage range, with a high efficiency. The disclosed switching capacitor regulator is configured to generate a wide range of an output voltage by differentiating a voltage across one or more switching capacitors from a voltage across the rest of the switching capacitors in the switching capacitor regulator.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 8, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: John Crossley, Hanh-Phuc Le, Alberto Alessandro Angelo Puggelli
  • Patent number: 10719099
    Abstract: The present disclosure shows a reconfigurable Dickson Star SC regulator that can support multiple conversion ratios by reconfiguring between various modes. The reconfigurable Dickson Star SC regulator is designed to reduce the number of redundant capacitors by reusing capacitors and switches across multiple modes of operation (across multiple conversion ratios). The present disclosure also shows a hybrid (e.g., two-stage) voltage regulator.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: July 21, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Alessandro Angelo Puggelli, Thomas Li, Wonyoung Kim, John Crossley, Hanh-Phuc Le
  • Patent number: 10720832
    Abstract: Circuits comprising: a capacitor; switches that, when State0, couple the capacitor in parallel with the load and, when State1, couple the capacitor in series with the load, wherein a first of the switches connects the capacitor to ground when in State0 and wherein a second of the switches connects the capacitor to an input voltage when in State1; a third switch, wherein a first side of the third switch is connected to the capacitor identically to one of the first switch and the second switch (OFWSW), wherein the third switch switches identically to the OFWSW, wherein the third switch is smaller than the OFWSW; a first resistor connected to the second side of the third switch; and a hardware processor that measures a current flowing through the first resistor and estimates the current provided to the load based on the current measured as flowing through the first resistor.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 21, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Hans Meyvaert, Thomas Li, Fred Chen, John Crossley, Zhipeng Li, Bertram J. Rodgers
  • Patent number: 10715035
    Abstract: Circuits comprising: a first capacitor(C1); a first switch(S1) having a first side coupled to a VIN and a second side coupled to a first side of C1; a second switch(S2) having a first side coupled to the second side of S1; a third switch(S3) having a first side coupled to a second side of S2 and a second side coupled to a second side of C1; a fourth switch(S4) having a first side coupled to a second side of S3 and a second side coupled to a VSUPPLY, wherein: in a first state, S1 and S3 are off, and S2 and S4 are on; in a second state, S1 and S3 are on, and S2 and S4 are off; and at least one of a control of S1, a control of S2, a control of S3, and a control of S4 is coupled to a time-varying-slew-rate signal.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: July 14, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Thomas Li, Zhipeng Li, Alberto Puggelli, Hans Meyvaert
  • Patent number: 10673335
    Abstract: The present disclosure shows ways to use multiple “integrated voltage regulator (IVR) units” to offer IVRs that can cover a wide range of specifications without having to design separate IVRs for different specifications. Instead of designing separate IVRs and paying for separate mask sets for IVRs targeting different specifications (e.g., different design and mask sets for 1 A IVR, 5 A IVR), the disclosed embodiments present ways to design and fabricate large numbers of the same unit IVRs (e.g., 1 A IVR) and decide how many of them to use post-fabrication to deliver different current specifications (e.g., use five 1 A unit IVRs for 5 A, use ten 1 A unit IVRs for 10 A). These disclosed embodiments reduce the mask cost of fabricating IVRs for different specifications and reduce design time by focusing on a single unit IVR.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: June 2, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Hanh-Phuc Le, John Crossley, Wonyoung Kim
  • Patent number: 10601311
    Abstract: Circuits for a voltage regulator are provided, comprising: an inductor having a first side coupled to an input voltage; a first flying capacitor; a second flying capacitor; and a plurality of switches, wherein: in a first state, the plurality of switches couple: a second side of the inductor to a second side of the first flying capacitor and an output node; a first side of the first flying capacitor to a first side of the second flying capacitor; and a second side of the second flying capacitor to a voltage supply, in a second state, the plurality of switches couple: the second side of the inductor to the first side of the second flying capacitor; the second side of the second flying capacitor to the output node and the first side of the first flying capacitor; and the second side of the first flying capacitor to the voltage supply.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 24, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Hans Meyvaert, Zhipeng Li, Alberto Alessandro Angelo Puggelli, Thomas Li
  • Patent number: 10541603
    Abstract: Circuits comprising: an inductor having a first side connected to VIN; a first switch having a first side connected to a second side of the inductor; a second switch having a first side connected to VIN; a first capacitor having a first side connected to a second side of the second switch; a third switch having a first side connected to a second side of the first switch; a fourth switch having a first side connected to a second side of the third switch; a fifth switch having a first side connected to a second side of the first capacitor and to a second side of the fourth switch, and having a second side coupled to a voltage source; and a second capacitor having a first side connected to the first side of the fourth switch, and having a second side connected to the second side of the fifth switch.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 21, 2020
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Alessandro Angelo Puggelli, Thomas Li, Wonyoung Kim, John Crossley, Hanh-Phuc Le
  • Patent number: 10523039
    Abstract: Systems for charging a battery are provided, the systems comprising: a regulator having an output coupled to the battery and having an input; a wireless charging receiver having an output coupled to the input of the regulator and having an input that receives a power signal from a wireless charging transmitter; a controller having a first input coupled to the input of the regulator, having a second input coupled to the output of the regulator, and having a first output coupled to the wireless charging transmitter, wherein the controller is configured to send, using the first output of the controller, a control signal to the wireless charging transmitter that causes the wireless charging transmitter to change the power signal provided to the wireless charging receiver.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: December 31, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: Aaron Melgar, Wonyoung Kim, Hans Meyvaert
  • Patent number: 10411490
    Abstract: Voltage regulator systems include, in part, a regulator comprising an input terminal and an output terminal, wherein the regulator is configured to receive an input voltage from an adapter at the input terminal and provide an output voltage at the output terminal, wherein the regulator comprises at least one switched capacitor regulator operating in a first conversion mode corresponding to a first conversion factor. The voltage regulator systems also include a controller configured to control an operation of the regulator, wherein the controller is configured to determine when a conversion ratio of the regulator is greater than the first conversion factor, and, in response, to send a request to the adapter to decrease the input voltage.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: September 10, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: Aaron Melgar, Alberto Alessandro Angelo Puggelli, Thomas Li, Zhipeng Li, Hans Meyvaert, John Crossley, Wonyoung Kim
  • Patent number: 10389244
    Abstract: A feedback system that can control hybrid regulator topologies that have multiple converters or regulators connected in series is described. The hybrid regulator can include at least two regulators: a switched inductor regulator and a switched-capacitor regulator. The feedback system can simplify feedback design for the hybrid regulator that can include multiple converter stages and can control the feedback to improve the efficiency of a hybrid regulator.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 20, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: Hanh-Phuc Le, John Crossley, Alberto Alessandro Angelo Puggelli, Wonyoung Kim
  • Patent number: 10355593
    Abstract: An inductor; a first switch having a first side connected to a first voltage source (VS1); a second switch having a first side connected to a second side of the first switch (2SS1), and a second side connected to a first side of the inductor (1SI); a third switch having a first side connected to the 1SI; a fourth switch having a first side connected to a second side of the third switch (2SS3), and a second side connected to a second voltage source (VS2); a fifth switch having a first side connected to the 1SI, and a second side connected to the VS1 and/or the VS2; a first capacitor having a first side connected to the 2SS1, and a second side connected to the 2SS3; and a second capacitor having a first side connected to a second side of the inductor, and a second side connected to the VS2.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: July 16, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Puggelli, Minbok Lee, Hans Meyvaert, Zhipeng Li
  • Patent number: 10320295
    Abstract: The present disclosure provides an asymmetric switching capacitor regulator that is capable of providing an output voltage, covering a wide voltage range, with a high efficiency. The disclosed switching capacitor regulator is configured to generate a wide range of an output voltage by differentiating a voltage across one or more switching capacitors from a voltage across the rest of the switching capacitors in the switching capacitor regulator.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: June 11, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: John Crossley, Hanh-Phuc Le, Alberto Alessandro Angelo Puggelli
  • Patent number: 10289146
    Abstract: The present disclosure shows a reconfigurable Dickson Star SC regulator that can support multiple conversion ratios by reconfiguring between various modes. The reconfigurable Dickson Star SC regulator is designed to reduce the number of redundant capacitors by reusing capacitors and switches across multiple modes of operation (across multiple conversion ratios). The present disclosure also shows a hybrid (e.g., two-stage) voltage regulator.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: May 14, 2019
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Alessandro Angelo Puggelli, Thomas Li, Wonyoung Kim, John Crossley, Hanh-Phuc Le
  • Patent number: RE49763
    Abstract: A feedback system that can control hybrid regulator topologies that have multiple converters or regulators connected in series is described. The hybrid regulator can include at least two regulators: a switched inductor regulator and a switched-capacitor regulator. The feedback system can simplify feedback design for the hybrid regulator that can include multiple converter stages and can control the feedback to improve the efficiency of a hybrid regulator.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: December 19, 2023
    Assignee: Lion Semiconductor Inc.
    Inventors: Hanh-Phuc Le, John Crossley, Alberto Alessandro Angelo Puggelli, Wonyoung Kim
  • Patent number: RE50103
    Abstract: Circuits comprising: an inductor having a first side connected to VIN; a first switch having a first side connected to a second side of the inductor; a second switch having a first side connected to VIN; a first capacitor having a first side connected to a second side of the second switch; a third switch having a first side connected to a second side of the first switch; a fourth switch having a first side connected to a second side of the third switch; a fifth switch having a first side connected to a second side of the first capacitor and to a second side of the fourth switch, and having a second side coupled to a voltage source; and a second capacitor having a first side connected to the first side of the fourth switch, and having a second side connected to the second side of the fifth switch.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: August 27, 2024
    Assignee: Lion Semiconductor Inc.
    Inventors: Alberto Alessandro Angelo Puggelli, Thomas Li, Wonyoung Kim, John Crossley, Hanh-Phuc Le