Patents Assigned to LioniX International BV
  • Patent number: 11754907
    Abstract: Aspects of the present disclosure are directed to photon-pair sources based on an external-cavity laser comprising a gain element and a planar-lightwave circuit that includes a surface-waveguide-based mirror and a ring resonator that enables four-wave mixing, where the surface-waveguide mirror and the ring resonator reside within the gain cavity of the laser itself. As a result, photon-pair sources in accordance with the present disclosure can have: (1) a larger free-spectral range for the entire laser cavity to enable generation of a single wavelength to realize single-mode operation without additional stabilization; and (2) low laser noise, thereby enabling detection and use of the generated photon pairs.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: September 12, 2023
    Assignee: LIONIX INTERNATIONAL BV
    Inventor: Jörn Philipp Epping
  • Patent number: 11489611
    Abstract: An approach for realizing low-power, high-port-count optical switching systems, such as OXCs, WXCs, and ROADMs is presented. Optical switching systems in accordance with the present disclosure include arrangements of frequency-filter blocks, each of which includes a cascaded arrangement of tunable couplers and tunable Mach-Zehnder Interferometers (MZIs) that provides a substantially flat-top broadband transfer function for the frequency-filter block. The tunability for these devices is achieved by operatively coupling a low-power-dissipation phase controller, such as a stress-optic phase controller or liquid-crystal-based phase controller with one arm of the device, thereby enabling control over the coupling coefficient of the device.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 1, 2022
    Assignee: LioniX International BV
    Inventors: Ruud Michiel Oldenbeuving, Chris Gerardus Hermanus Roeloffzen, Caterina Taddei, René Gerrit Heideman
  • Patent number: 11320587
    Abstract: Aspects of the present disclosure describe planar lightwave circuit systems, methods and structures including a resonant mirror assembly having cascaded resonators that provide or otherwise facilitate the control of the transmissivity/reflectivity of a planar lightwave circuit (PLC)—or portion thereof—over a range of 0% to substantially 100%.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: May 3, 2022
    Assignee: LioniX International BV
    Inventors: Ruud Michiel Oldenbeuving, Chris Gerardus Hermanus Roeloffzen, Roelof Bernardus Timens, Jörn Philipp Epping, Ilka Dove, Dimitri Geskus
  • Patent number: 10437081
    Abstract: A phase controller for controlling the phase of a light signal in a surface waveguide and a method for its fabrication are disclosed. The phase controller controls the phase of the light signal by inducing stress in the waveguide structure, thereby controlling the refractive indices of at least some of its constituent layers. The phase controller includes a phase-control element formed on topographic features of the top cladding of the waveguide, where these features (1) provide a shape to the phase-control element that matches the shape of the mode field of the light signal and (2) give rise to stress-concentration points that focus and direct induced stress into specific regions of the waveguide structure, thereby providing highly efficient phase control. As a result, the phase controller can operate at a lower voltage, lower power, and/or over a shorter interaction length than integrated-optic phase controllers of the prior art.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: October 8, 2019
    Assignee: LioniX International BV
    Inventors: Jörn Philipp Epping, Arne Leinse, René Gerrit Heideman
  • Patent number: 10338318
    Abstract: Aspects of the present disclosure describe planar lightwave circuit systems, methods and structures including a resonant mirror assembly having cascaded resonators that provide or otherwise facilitate the control of the transmissivity/reflectivity of a planar lightwave circuit (PLC)—or portion thereof—over a range of 0% to substantially 100%.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 2, 2019
    Assignee: LioniX International BV
    Inventors: Ruud Oldenbeuving, Chris Roeloffzen, Roelof Timens, Ilka Dove
  • Patent number: 10241352
    Abstract: A phase controller for controlling the phase of a light signal in a surface waveguide and a method for its fabrication are disclosed. The phase controller controls the phase of the light signal by inducing stress in the waveguide structure, thereby controlling the refractive indices of at least some of its constituent layers. The phase controller includes a phase-control element formed on topographic features of the top cladding of the waveguide, where these features (1) provide a shape to the phase-control element that matches the shape of the mode field of the light signal and (2) give rise to stress-concentration points that focus and direct induced stress into specific regions of the waveguide structure, thereby providing highly efficient phase control. As a result, the phase controller can operate at a lower voltage, lower power, and/or over a shorter interaction length than integrated-optic phase controllers of the prior art.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: March 26, 2019
    Assignee: LioniX International BV
    Inventors: Jörn Philipp Epping, Arne Leinse, René Gerrit Heideman
  • Patent number: 10180390
    Abstract: A flow cytometry system having a flow channel defined through the thickness of a substrate is disclosed. Fluid flowing through the flow channel is illuminated by a first plurality of surface waveguides that are arranged around the flow channel in a first plane, while a second plurality of surface waveguides arranged around the flow channel in a second plane receive light after it has interacted with the fluid. The illumination pattern provided to the fluid is controlled by controlling the phase of the light in the first plurality of surface waveguides. As a result, the fluid is illuminated with light that is uniform and has a low coefficient of variation, improving the ability to distinguish and quantify characteristics of the fluid, such as cell count, DNA content, and the like.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 15, 2019
    Assignee: LioniX International BV
    Inventors: Frederik Schreuder, Marcel Hoekman, Ronald Dekker, Seyed Naser Hosseini
  • Patent number: 9939582
    Abstract: A method for forming a non-linear thickness-profile in a first layer of a first material is disclosed. The method comprises forming an accelerator layer of a second material on the first layer and forming a mask layer disposed on the accelerator layer, wherein the mask layer enables the accelerator layer to expose the first layer to a first etchant in a first region, where the exposure time for each point along a first axis varies non-linearly as a function of distance from a first point on the first axis. Since the time for which the first layer is exposed to the first etch in the first region is non-linear, the thickness of the first layer in the first region changes non-linearly along the first axis.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: April 10, 2018
    Assignee: LioniX International BV
    Inventors: Rene Gerrit Heideman, Marcel Hoekman
  • Patent number: 9864144
    Abstract: A multi-path interferometric sensor for sensing small changes in the refractive index of sensing arms thereof, such as caused by the presence of an analyte or changes in analyte concentration, is disclosed. The sensor includes a single light source, a single detector, and a plurality of interferometers or a single multi-path interferometer. The various sensing branches within the multi-path interferometric sensor each include a delay having a different length. This results in a different modulation frequency for each interferometer, each of carriers include phase information that correlates to a change in refractive index and, ultimately, analyte concentration. The plural carrier frequencies enable simultaneous detection of multiple samples.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: January 9, 2018
    Assignee: LioniX International BV
    Inventors: Frederik Schreuder, Rene Gerrit Heideman