Abstract: A process for quantifying a concentration of a targeted molecule in a liquid sample in which a signal beam and a reference beam (and also optionally an interference beam) are pulsed, each beam being pulsed from its own source (preferably at narrow bandwidths), the pulsed beams are spatially combined into a single radiation beam which passes into the liquid sample and then pulsed output beams are detected after the single radiation beam passes out of the liquid sample. The pulsed signal beam output and the pulsed reference beam are processed to obtain a value over a preselected period of time and, if an interference beam is used, it is processed with the reference beam to obtain a calibration curve adjustment representative of optical interference represented by at least one interfering molecule concentration which is used to calculate the concentration level of the targeted particle in the liquid sample.
Abstract: A process and sensor system useful for determining a concentration of a targeted molecule M (such as glucose) within a given time period in a liquid sampling matrix wherein the sample volume is configured so that a sampling error caused by changes of the targeted molecule passing in and out of the sample volume is approximately the same or less than a measurement error caused by an accuracy limit of electronic components and optical elements used in the sensor system.
Abstract: A process and sensor system useful for determining a concentration of a targeted molecule M (such as glucose) within a given time period in a liquid sampling matrix wherein the sample volume is configured so that a sampling error caused by changes of the targeted molecule passing in and out of the sample volume is approximately the same or less than a measurement error caused by an accuracy limit of electronic components and optical elements used in the sensor system.