Patents Assigned to Liquid X Printed Metals, Inc.
-
Patent number: 11999864Abstract: Described herein are molecular inks, methods for printing the molecular inks on flexible substrates, and methods for forming printed electronic elements, such as resistive heaters, force sensors, motion sensors, and devices that include these elements, such as force responsive conductive heaters. The methods include printing a molecular ink on a flexible substrate that is heated to 30° C. to 90° C. before and/or during the printing process and curing the substrate to produce a conductive pattern thereon. The molecular inks generally include a particle-fee metal-complex composition formulated from at least one metal complex and a solvent, and optionally, a conductive filler material, and/or surfactant.Type: GrantFiled: June 13, 2022Date of Patent: June 4, 2024Assignee: LIQUID X PRINTED METALS, INC.Inventor: Robert Swisher
-
Patent number: 11851572Abstract: Dielectric coating compositions are provided. The dielectric coating compositions generally include an aqueous binder, an inorganic nanoparticle, and a solvent, and can be formulated for specific printing methods, such as inkjet printing. The dielectric coating compositions are curable to provide scratch resistant coatings useful as insulating layers.Type: GrantFiled: March 3, 2020Date of Patent: December 26, 2023Assignee: LIQUID X PRINTED METALS, INC.Inventors: Robert G Swisher, Christianna M Petrak
-
Patent number: 11724532Abstract: Described herein are adhesive gold inks, and methods for making and depositing these inks to form conductive traces. The adhesive gold inks generally contain a gold complex dissolved in a mixed solvent system including at least a diol and an amine. The mixed solvent system may further include a thioalkyldiol. The gold complex includes a first ligand and a second ligand. The first ligand may be a thioether, a phosphine, or an amine that volatilizes upon heating at a temperature of 200° C. or less. The second ligand may be a halide or a carboxylate. The adhesive gold inks are clear and particle-free and may be formulated for deposition by a wide range of printing methods on both flexible and non-flexible substrates.Type: GrantFiled: May 20, 2020Date of Patent: August 15, 2023Assignee: LIQUID X PRINTED METALS, INC.Inventors: Christianna M Petrak, Chengeto Gwengo
-
Patent number: 11680180Abstract: Described herein are methods for forming e-textiles, wherein the methods include printing a particle-free conductive ink on a textile substrate, and curing the textile substrate to produce a conductive pattern thereon. The printing may include inkjet printing and may produce a printed pattern which exhibits an ink bleed of less than 0.5 mm, such as less than 0.2 mm. During printing, the textile substrate may be heated to a temperature of 30° C. to 90° C. before and during the printing process. The fabric substrate may be cured using heat and/or light to produce a conductive pattern having a sheet resistance of less than 10?/?, or even less than 1?/?.Type: GrantFiled: February 13, 2019Date of Patent: June 20, 2023Assignee: LIQUID X PRINTED METALS, INC.Inventors: Chengeto Gwengo, Robert G. Swisher, Christianna M. Petrak
-
Patent number: 11118078Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: GrantFiled: August 3, 2020Date of Patent: September 14, 2021Assignee: Liquid X Printed Metals, Inc.Inventors: Richard D McCullough, John Belot, Rebecca Potash
-
Publication number: 20200369061Abstract: Described herein are adhesive gold inks, and methods for making and depositing these inks to form conductive traces. The adhesive gold inks generally contain a gold complex dissolved in a mixed solvent system including at least a diol and an amine. The mixed solvent system may further include a thioalkyldiol. The gold complex includes a first ligand and a second ligand. The first ligand may be a thioether, a phosphine, or an amine that volatilizes upon heating at a temperature of 200° C. or less. The second ligand may be a halide or a carboxylate. The adhesive gold inks are clear and particle-free and may be formulated for deposition by a wide range of printing methods on both flexible and non-flexible substrates.Type: ApplicationFiled: May 20, 2020Publication date: November 26, 2020Applicant: Liquid X Printed Metals, Inc.Inventors: Christianna M Petrak, Chengeto Gwengo
-
Publication number: 20200362188Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: ApplicationFiled: August 3, 2020Publication date: November 19, 2020Applicant: Liquid X Printed Metals, Inc.Inventors: Richard D McCullough, John Belot, Rebecca Potash
-
Publication number: 20200283653Abstract: Dielectric coating compositions are provided. The dielectric coating compositions generally include an aqueous binder, an inorganic nanoparticle, and a solvent, and can be formulated for specific printing methods, such as inkjet printing. The dielectric coating compositions are curable to provide scratch resistant coatings useful as insulating layers.Type: ApplicationFiled: March 3, 2020Publication date: September 10, 2020Applicant: Liquid X Printed Metals, Inc.Inventors: Robert G. Swisher, Christianna M. Petrak
-
Patent number: 10738211Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: GrantFiled: March 16, 2018Date of Patent: August 11, 2020Assignee: Liquid X Printed Metals, Inc.Inventors: Richard D. McCullough, John Belot, Rebecca Potash
-
Publication number: 20190249026Abstract: Described herein are methods for forming e-textiles, wherein the methods include printing a particle-free conductive ink on a textile substrate, and curing the textile substrate to produce a conductive pattern thereon. The printing may include inkjet printing and may produce a printed pattern which exhibits an ink bleed of less than 0.5 mm, such as less than 0.2 mm. During printing, the textile substrate may be heated to a temperature of 30° C. to 90° C. before and during the printing process. The fabric substrate may be cured using heat and/or light to produce a conductive pattern having a sheet resistance of less than 10?/?, or even less than 1?/?.Type: ApplicationFiled: February 13, 2019Publication date: August 15, 2019Applicant: Liquid X Printed Metals, Inc.Inventors: Chengeto Gwengo, Robert G. Swisher, Christianna Cox
-
Publication number: 20180208790Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: ApplicationFiled: March 16, 2018Publication date: July 26, 2018Applicant: LIQUID X PRINTED METALS, INC.Inventors: Richard D. McCullough, Rebecca Potash
-
Patent number: 9920212Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: GrantFiled: May 20, 2016Date of Patent: March 20, 2018Assignee: Liquid X Printed Metals, Inc.Inventors: Richard D. McCullough, John Belot, Rebecca Potash
-
Patent number: 9487669Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal form elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: GrantFiled: May 4, 2012Date of Patent: November 8, 2016Assignee: LIQUID X PRINTED METALS, INC.Inventors: Richard D. McCullough, John Belot, Rebecca Potash
-
Publication number: 20160264802Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.Type: ApplicationFiled: May 20, 2016Publication date: September 15, 2016Applicant: LIQUID X PRINTED METALS, INC.Inventors: Richard D. McCullough, John Belot, Rebecca Potash
-
Publication number: 20130236656Abstract: Metal complexes adapted to form metallic conductive films upon deposition and treatment. The complexes can have a high concentration of metal and can be soluble in polar protic solvent including ethanol and water. The metal complex can be a covalent complex and can comprise a first and second ligand. Low temperature treatment can be used to convert the complex to a metal. The metallic conductive film can have low resistivity and work function close to pure metal. Coinage metals can be used (e.g., Ag). The ligands can be dative bonding ligands including amines and carboxylate ligands. The ligands can be adapted to volatilize well. High yields of metal can be achieve with high conductivity.Type: ApplicationFiled: February 26, 2013Publication date: September 12, 2013Applicant: Liquid X Printed Metals, Inc.Inventors: Richard D. MCCULLOUGH, John BELOT, Rebecca POTASH, Elizabeth SEFTON, Christiana COX
-
Publication number: 20130156971Abstract: Provided herein are methods comprising (i) depositing an ink on a surface, (ii) producing a conductive metal film by, for example, heating or irradiating or other treatment of said ink, and (iii) wherein the metal film is in the form of a repetitively patterned structure forming a grid-like network of vertex-shared polygons and polygon-like structures with a varying number of vertices. Transparent, conductive structures can be formed and serve as, for example, ITO-replacement materials and structures.Type: ApplicationFiled: October 25, 2012Publication date: June 20, 2013Applicant: Liquid X Printed Metals, Inc.Inventor: Liquid X Printed Metals, Inc.