Patents Assigned to Litron Laboratories, Ltd.
  • Patent number: 9857358
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 2, 2018
    Assignee: Litron Laboratories Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 9470694
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 18, 2016
    Assignee: Litron Laboratories Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 9285365
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 15, 2016
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 9133505
    Abstract: The invention relates to methods and kits for the quantitative analysis of in vivo mutation frequencies of the Pig-A gene in individuals, particularly using peripheral blood samples of vertebrates.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 15, 2015
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce
  • Patent number: 8889369
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 18, 2014
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Publication number: 20140255948
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Publication number: 20140065608
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: Litron Laboratories, Ltd.
    Inventor: Stephen D. DERTINGER
  • Publication number: 20130337465
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: Litron Laboratories, Ltd.
    Inventors: Stephen D. DERTINGER, Sian E. CAIRNS, Svetlana L. AVLASEVICH, Dorothea K. TOROUS
  • Patent number: 8586321
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: November 19, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 8535226
    Abstract: The present invention relates a method for assessing in vivo hematotoxicity. The method utilizes differential staining of nucleated and non-nucleated blood cells, and also differential labeling of cells with functional versus dysfunctional mitochondrial membrane potential. Quantitative analyses can be conducted on stained whole blood specimens, and is based on blood cells' fluorescent emission and light scatter properties following exposure to an excitatory light source. The ratio of certain cell populations can be readily measured. Furthermore, it is also possible to express cell population values in terms of number per unit volume. This invention can be used to evaluate the hematotoxicity of drugs, chemicals, radiation, and other exogenous agents, or the effects that a suspected protective agent may have on induced hematotoxicity. Furthermore, the matrix of measurements provided by this invention is useful in estimating radiation dose, i.e., retrospectively.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 17, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Jeffrey C. Bemis, Steven M. Bryce
  • Patent number: 8524449
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 3, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Sian E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous
  • Patent number: 8187826
    Abstract: The invention relates to methods and kits for the quantitative analysis of in vivo mutation frequencies of the Pig-A gene in individuals exposed to a genotoxicant, particularly using peripheral blood samples of vertebrates.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 29, 2012
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 8076095
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 13, 2011
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 8062860
    Abstract: The present invention relates a method for the enumeration of in vivo gene mutation. The method utilizes differential staining of GPI-anchor deficient erythrocyte populations to distinguish between wild-type and pig-a gene mutants. Quantitative analyses can be conducted on erythrocytes and/or reticulocytes, and is based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of mutant erythrocytes or reticulocytes relative to the number of total erythrocytes or reticulocytes can be used to assess the DNA-damaging potential of an exogenous chemical agent, the DNA-damaging potential of an exogenous physical agent, the effects of an exogenous agent which can modify endogenously-induced DNA damage, and the effects of an exogenous agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 22, 2011
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 8062222
    Abstract: The present invention relates a method for assessing in vivo hematotoxicity. The method utilizes differential staining of nucleated and non-nucleated blood cells, and also differential labeling of cells with functional versus dysfunctional mitochondrial membrane potential. Quantitative analyses can be conducted on stained whole blood specimens, and is based on blood cells' fluorescent emission and light scatter properties following exposure to an excitatory light source. The ratio of certain cell populations can be readily measured. Furthermore, it is also possible to express cell population values in terms of number per unit volume. This invention can be used to evaluate the hematotoxicity of drugs, chemicals, radiation, and other exogenous agents, or the effects that a suspected protective agent may have on induced hematotoxicity. Furthermore, the matrix of measurements provided by this invention is useful in estimating radiation dose, i.e., retrospectively.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 22, 2011
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Jeffrey C. Bemis, Steven M. Bryce
  • Patent number: 7867447
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: January 11, 2011
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 7824874
    Abstract: The present invention relates a method for the enumeration of in vivo gene mutation. The method utilizes differential staining of GPI-anchor deficient erythrocyte populations to distinguish between wild-type and pig-a gene mutants. Quantitative analyses can be conducted on erythrocytes and/or reticulocytes, and is based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of mutant erythrocytes or reticulcoytes relative to the number of total erythrocytes or reticulocytes can be used to assess the DNA-damaging potential of an exogenous chemical agent, the DNA-damaging potential of an exogenous physical agent, the effects of an exogenous agent which can modify endogenously-induced DNA damage, and the effects of an exogenous agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: November 2, 2010
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Publication number: 20100112594
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 6, 2010
    Applicant: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Siân E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous
  • Patent number: 7645593
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: January 12, 2010
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Sian E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous
  • Patent number: 7445910
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: November 4, 2008
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Siân E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous