Patents Assigned to Litron Laboratories, Ltd.
  • Patent number: 11828763
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: November 28, 2023
    Assignee: LITRON LABORATORIES, LTD.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 11016101
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: May 25, 2021
    Assignee: LITRON LABORATORIES LTD.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 10802013
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 13, 2020
    Assignee: LITRON LABORATORIES LTD.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 10000793
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: June 19, 2018
    Assignee: LITRON LABORATORIES, LTD.
    Inventors: Stephen D. Dertinger, Sian E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous
  • Patent number: 9857358
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 2, 2018
    Assignee: Litron Laboratories Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 9470694
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 18, 2016
    Assignee: Litron Laboratories Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Patent number: 9285365
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 15, 2016
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 9133505
    Abstract: The invention relates to methods and kits for the quantitative analysis of in vivo mutation frequencies of the Pig-A gene in individuals, particularly using peripheral blood samples of vertebrates.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 15, 2015
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce
  • Patent number: 8889369
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 18, 2014
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Publication number: 20140255948
    Abstract: The present invention relates a simple method for evaluating free eukaryotic cell nuclei for biomarkers of DNA damage and/or transcription factor activation, activity, or expression levels and/or epigenetic modifications to chromatin or chromatin-associated factors. The invention also teaches useful strategies for combining nuclear biomarkers into a matrix of endpoints that are capable of elucidating genotoxicants' primary mode of DNA-damaging activity. Kits for conducting methods according to the invention are also described.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Steven M. Bryce, Jeffrey C. Bemis
  • Publication number: 20140065608
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: Litron Laboratories, Ltd.
    Inventor: Stephen D. DERTINGER
  • Publication number: 20140017673
    Abstract: The present invention relates a method for the enumeration of eukaryotic cell micronuclei, while simultaneously acquiring cytotoxicity and mode of action information. The method utilizes differential labeling of chromatin from dead and dying cells to distinguish the chromatin from micronuclei, nuclei, and metaphase chromosomes, and differential labeling of metaphase events to provide additional information regarding cytotoxicity and genotoxic modes of action. Counting of micronuclei events relative to the number of nuclei and quantifying perturbations to the proportion of metaphase events can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, the effects of an agent which can modify exogenously-induced DNA damage, and genotoxic mode of action.
    Type: Application
    Filed: March 9, 2013
    Publication date: January 16, 2014
    Applicant: LITRON LABORATORIES, LTD.
    Inventors: Stephen D. Dertinger, Steven M. Bryce
  • Publication number: 20130337465
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: Litron Laboratories, Ltd.
    Inventors: Stephen D. DERTINGER, Sian E. CAIRNS, Svetlana L. AVLASEVICH, Dorothea K. TOROUS
  • Patent number: 8586321
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: November 19, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 8535226
    Abstract: The present invention relates a method for assessing in vivo hematotoxicity. The method utilizes differential staining of nucleated and non-nucleated blood cells, and also differential labeling of cells with functional versus dysfunctional mitochondrial membrane potential. Quantitative analyses can be conducted on stained whole blood specimens, and is based on blood cells' fluorescent emission and light scatter properties following exposure to an excitatory light source. The ratio of certain cell populations can be readily measured. Furthermore, it is also possible to express cell population values in terms of number per unit volume. This invention can be used to evaluate the hematotoxicity of drugs, chemicals, radiation, and other exogenous agents, or the effects that a suspected protective agent may have on induced hematotoxicity. Furthermore, the matrix of measurements provided by this invention is useful in estimating radiation dose, i.e., retrospectively.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 17, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Jeffrey C. Bemis, Steven M. Bryce
  • Patent number: 8524449
    Abstract: The present invention relates a method for the enumeration of mammalian cell micronuclei, while distinguishing micronuclei from the chromatin of dead and dying cells. The method utilizes differential staining of chromatin from dead and dying cells, to distinguish the chromatin from micronuclei and nuclei that can be detected based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of micronuclei events relative to the number of nuclei can be used to assess the DNA-damaging potential of a chemical agent, the DNA-damaging potential of a physical agent, the effects of an agent which can modify endogenously-induced DNA damage, and the effects of an agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 3, 2013
    Assignee: Litron Laboratories, Ltd.
    Inventors: Stephen D. Dertinger, Sian E. Cairns, Svetlana L. Avlasevich, Dorothea K. Torous
  • Patent number: 8187826
    Abstract: The invention relates to methods and kits for the quantitative analysis of in vivo mutation frequencies of the Pig-A gene in individuals exposed to a genotoxicant, particularly using peripheral blood samples of vertebrates.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 29, 2012
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Publication number: 20120129160
    Abstract: The invention relates to methods and kits for the quantitative analysis of in vivo mutation frequencies of the Pig-A gene in individuals, particularly using peripheral blood samples of vertebrates.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 24, 2012
    Applicant: LITRON LABORATORIES, LTD.
    Inventors: Stephen D. DERTINGER, Steven M. BRYCE
  • Publication number: 20120107803
    Abstract: A method for the enumeration of micronucleated erythrocyte populations while distinguishing platelet and platelet-associated aggregates involves the use of a first fluorescent labeled antibody having binding specificity for a surface marker for reticulocytes, a second fluorescent labeled antibody having binding specificity for a surface marker for platelets, and a nucleic acid staining dye that stains DNA (micronuclei) in erythrocyte populations. Because the fluorescent emission spectra of the first and second fluorescent labeled antibodies do not substantially overlap with one another or with the emission spectra of the nucleic acid staining dye, upon excitation of the labels and dye it is possible to detect the fluorescent emission and light scatter produced by the erythrocyte populations and platelets, and count the number of cells from one or more erythrocyte populations in said sample.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 3, 2012
    Applicant: LITRON LABORATORIES, LTD.
    Inventor: Stephen D. Dertinger
  • Publication number: 20120052509
    Abstract: The present invention relates a method for assessing in vivo hematotoxicity. The method utilizes differential staining of nucleated and non-nucleated blood cells, and also differential labeling of cells with functional versus dysfunctional mitochondrial membrane potential. Quantitative analyses can be conducted on stained whole blood specimens, and is based on blood cells' fluorescent emission and light scatter properties following exposure to an excitatory light source. The ratio of certain cell populations can be readily measured. Furthermore, it is also possible to express cell population values in terms of number per unit volume. This invention can be used to evaluate the hematotoxicity of drugs, chemicals, radiation, and other exogenous agents, or the effects that a suspected protective agent may have on induced hematotoxicity. Furthermore, the matrix of measurements provided by this invention is useful in estimating radiation dose, i.e., retrospectively.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Applicant: LITRON LABORATORIES, LTD.
    Inventors: Stephen D. DERTINGER, Jeffrey C. BEMIS, Steven M. BRYCE