Abstract: A fuse assembly includes: (i) a junction box including a battery B+ board having a plurality of metallized slots and a distribution board having a plurality of metallized slots; and (ii) a plurality of fuses releasably secured within the metallized slots, the fuses each including a substrate, first and second contacts positioned on the substrate, each contact in electrical communication with one of the metallized slots, and a fuse element in electrical communication with the first and second contacts.
Abstract: A stacked arrangement of integrated circuit chips are bonded to a lead frame. Two side-by-side integrated circuit chips have bottom contact pads bonded to a lead frame structure having contact terminals. The two side-by-side integrated circuits have top contact pads bonded to an overlying integrated circuit chip. A low profile integrated circuit assembly is achieved without using bond wires or preforms, and which is well adapted for SO-8 packages.
Abstract: One embodiment of the present invention provides a fuse having opened-fuse indication, which places two or more coils or conductors in parallel and in thermal contact with an indicating material. The multiple conductors allow a lower level of current to produce sufficient heat or sufficient electrical resistance to transform the indicating material. The multiple conductors can also be made of a reduced diameter, resulting in surge protection at a lower device temperature. The multiple conductor indicator in an embodiment includes a base material. First and second conductors contact the base material. An indicating material thermally couples to the first and second conductors. The indicating material can be on the inside or outside of the fuse body. If on the outside, the body can define a recess, wherein the indicator resides within the recess. The indicator can operate with fuses and other types of circuit protection devices.
Type:
Grant
Filed:
June 26, 2002
Date of Patent:
July 29, 2008
Assignee:
Littelfuse, Inc
Inventors:
John Kennedy, Tom Novak, Mark Klinger, William Gonzalez
Abstract: Embodiments for an in-line fuse holder each include at least one housing and two mating pieces, which can snap-fit together and be held moveably together via a strap. Each embodiment houses at least one fuse, such as an automotive fuse. In one example, the fuse includes a first housing forming a first cavity, which is configured to house a first portion of the fuse. The first housing also includes a projection having sides that taper outwardly as the sides extend away from the first housing. The fuse holder also includes a second housing forming a second cavity, which is configured to house a second portion of the fuse. The second housing includes a channel having sides that taper outwardly as the sides extend into the second housing. The projection and channel snap-fit together in a water resistant relationship.
Type:
Grant
Filed:
June 20, 2006
Date of Patent:
May 27, 2008
Assignee:
Littelfuse, Inc.
Inventors:
Christian Pentell, John Adamczyk, Charles E. Klinger
Abstract: Methods of manufacturing a variety of circuit protection devices are provided as well as devices so manufactured. In an embodiment, a surface mount electrical device having a substrate and a pair of conductive electrodes connected to an electrical protection component for sensing current or voltage is provided. The method includes the steps of: (i) providing a substrate having a first surface and a second surface; creating a first and second aperture, plasma etching a through-hole, slot or bore through the substrate; (ii) depositing a conductive material on the substrate and through the apertures to form the electrodes, wherein the conductive material extends through the apertures and on the first and second surfaces of the substrate, respectively; and (iii) depositing the electrical protection component on the first surface of the substrate to electrically connect the electrodes.
Abstract: A circuit protection device includes a solid-state resettable switch, a first terminal in electrical communication with a first portion of the switch, the first terminal configured to be connected to a load. A second terminal is placed in electrical communication with a second portion of the switch, the second terminal configured to be connected to a power source. A controller is configured to enable the switch to be opened if an accumulated energy meets or exceeds a preset I2t rating, the accumulated energy based on a current sensed from an electrical point between one of (i) the load and the switch or (ii) the voltage source and the switch.
Abstract: A transient suppressor circuit for use in suppressing transient voltages superimposed on AC power conductors. The transient suppressor circuit includes a threshold thyristor connected in series with a capacitor. The transient suppressor circuit is connected across the AC power conductors. In response to a transient voltage superimposed on the AC power conductors, the thyristor is triggered into conduction. The series capacitor has a capacitance such that it represents a low impedance to the transient voltage, but a high impedance to the AC power line frequency. Accordingly, the triggering of the thyristor shunts high frequency transient currents to ground via the low impedance of the capacitor, but does not shunt low frequency AC power currents to ground because of the high capacitive impedance. Circuit fuses are thus not blown in response to low frequency overvoltages.
Abstract: A semiconductor chip is attached to bifurcated finger members of a lead frame. A pocket is formed between the semiconductor chip and the lead frame. An opening is formed between the bifurcated fingers for injecting into the pocket a voltage variable material to provide electrostatic discharge protection to circuits connected to the lead frame.
Abstract: A circuit protection device includes a fuse placed in electrical communication with first and second conductors. An overvoltage protection component is placed in electrical communication with the first conductor and a third conductor. An insulative housing encloses the fuse, overvoltage protection component and portions of the first, second and third conductors. The first and second conductors include first and second terminal portions, respectively, that extend through the housing and reside at least substantially flush with an outer surface of the housing.
Type:
Application
Filed:
April 6, 2006
Publication date:
October 11, 2007
Applicant:
Littelfuse, Inc.
Inventors:
Richard Bono, Juan Martinez, Stephen Whitney
Abstract: An electrostatic discharge control system and circuit uses a voltage variable material to protect an electrical circuit, such as radio frequency identification (RFID) tag, from electrostatic damage, The circuit includes two separate electrical circuit traces with a gap between the traces. The circuit includes and protects an electrical device, such as an integrated circuit, connected between the traces. The circuit includes a voltage variable material disposed adjacent to the gap and configured to directly electrically couple the first circuit trace to the second circuit trace upon occurrence of an electrostatic discharge event. The voltage variable material may be anisotropic.
Abstract: The present invention provides an improved voltage variable material (“VVM”). More specifically, the present invention provides an improved printed circuit board substrate, an improved device having circuit protection an improved data communications cable having circuit protection and a method for mass producing devices employing the VVM substrate of the present invention. The VVM substrate eliminates the need for an intermediate daughter or carrier board by impregnating conductive particles and possibly semiconductive and/or insulative particles associated with known volatage variable materials into the varnish or epoxy resin associated with known printed circuit board substrates.
Abstract: A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.
Abstract: A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.