Patents Assigned to Live Tissue Connect, Inc.
  • Publication number: 20090182331
    Abstract: The bipolar modular forceps assembly is a disposable electrosurgical device utilized with an RF voltage supply to weld soft tissue to prevent bleeding when cut or excised. The device consists of two modularly constructed arms arranged in scissor configuration that clamp when the arms are apart and open when the arms are squeezed together. The wires enter from the rear of the device, behind the digit insertion of the upper arm, and run through the interior of the upper arm before reaching the pivot point. From the pivot joint, one wire continues to the bottom jaw and the other wire wraps around the pin bushing in the pivot joint and proceeds to the top jaw. At all times the wires are fully insulated by the insulative cover with the only exposed wire occurring where they enter the device. The bipolar voltage of each wire is transferred to an electrode on each jaw.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: Live Tissue Connect, Inc.
    Inventors: Frank D. D'Amelio, Russell J. Redmond, James W. Cuevas
  • Publication number: 20090182330
    Abstract: The bipolar modular forceps assembly is a disposable electrosurgical device utilized with an RF voltage supply to weld soft tissue to prevent bleeding when cut or excised. The device consists of two modularly constructed arms arranged in scissor configuration that clamp when the arms are apart and open when the arms are squeezed together. The wires enter from the rear of the device, behind the digit insertion of the upper arm, and run through the interior of the upper arm before reaching the pivot point. From the pivot joint, one wire continues to the bottom jaw and the other wire wraps around the pin bushing in the pivot joint and proceeds to the top jaw. At all times the wires are fully insulated by the insulative cover with the only exposed wire occurring where they enter the device. The bipolar voltage of each wire is transferred to an electrode on each jaw.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: Live Tissue Connect, Inc.
    Inventors: Frank D. D'Amelio, Russell J. Redmond, James W. Cuevas
  • Publication number: 20090182322
    Abstract: The bipolar modular forceps assembly is a disposable electrosurgical device utilized with an RF voltage supply to weld soft tissue to prevent bleeding when cut or excised. The device consists of two modularly constructed arms arranged in scissor configuration that clamp when the arms are apart and open when the arms are squeezed together. The wires enter from the rear of the device, behind the digit insertion of the upper arm, and run through the interior of the upper arm before reaching the pivot point. From the pivot joint, one wire continues to the bottom jaw and the other wire wraps around the pin bushing in the pivot joint and proceeds to the top jaw. At all times the wires are fully insulated by the insulative cover with the only exposed wire occurring where they enter the device. The bipolar voltage of each wire is transferred to an electrode on each jaw.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: Live Tissue Connect, Inc.
    Inventors: Frank D. D'Amelio, Russell J. Redmond, James W. Cuevas
  • Publication number: 20090182328
    Abstract: The bipolar modular forceps assembly is a disposable electrosurgical device utilized with an RF voltage supply to weld soft tissue to prevent bleeding when cut or excised. The device consists of two modularly constructed arms arranged in scissor configuration that clamp when the arms are apart and open when the arms are squeezed together. The wires enter from the rear of the device, behind the digit insertion of the upper arm, and run through the interior of the upper arm before reaching the pivot point. From the pivot joint, one wire continues to the bottom jaw and the other wire wraps around the pin bushing in the pivot joint and proceeds to the top jaw. At all times the wires are fully insulated by the insulative cover with the only exposed wire occurring where they enter the device. The bipolar voltage of each wire is transferred to an electrode on each jaw.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: Live Tissue Connect, Inc.
    Inventors: Frank D. D'Amelio, Russell J. Redmond, James W. Cuevas
  • Patent number: 7025764
    Abstract: Technique for bonding soft biological tissue having an incision therein with forceps adapted to grip a portion of tissue on both sides of incision. Electrodes are secured to forceps for contracting the tissue portion. An electrical power source provides a high frequency electrical signal to electrodes to be passed through the tissue portion. The electrical power source is controlled to provide electrodes with one voltage signal during a first of two stages, wherein the voltage rises linearly, and another voltage signal during a second of the two stages, wherein the voltage is stabilized and modulated with a low frequency rectangular signal. A clamping means applies force with the forceps to compress the tissue at one or different levels during two time periods while the high frequency voltage is passed through the electrodes. The tissue impedance is measured as a function of time, with its minimal value being determined and stored.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 11, 2006
    Assignee: Live Tissue Connect, Inc.
    Inventors: Boris E. Paton, Vladimir K. Lebedev, David S. Vorona, Volodimir I. Karchemsky, Yuri A. Furmanov, Alexsey V. Lebedev, Valery A. Vasilchenko, Dmitry F. Sidorenko, Vitaly P. Iemchenko-Ribko, Olga N. Ivanova, Alexandr Y. Furmanov, Yevgen V. Zhyvodernikov, Andrei A. Lyashenko, Irina M. Savitskaya
  • Patent number: 6733498
    Abstract: A system and method for welding of biological tissue by applying an RF voltage during a first stage to electrodes of a tissue welding tool; monitoring tissue impedance, and determining a minimum tissue impedance value during the first stage; determining relative tissue impedance; detecting when the relative tissue impedance reaches a predetermined relative tissue impedance value and starting a second stage; calculating the duration of the second stage as a function of the duration of the first stage; and applying the RF voltage during the second stage to the electrodes of the tissue welding tool.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: May 11, 2004
    Assignee: Live Tissue Connect, Inc.
    Inventors: Boris E. Paton, Vladimir K. Lebedev, Alexei V. Lebedev, Yurii A. Masalov, Olga N. Ivanova, Mykhailo P. Zakharash, Yuri A. Furmanov