Abstract: Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices such as iterative soft-input soft-output and list decoding of convolutional codes, Reed-Solomon codes and BCH codes. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics.
Type:
Grant
Filed:
October 25, 2018
Date of Patent:
February 25, 2020
Assignee:
LN2 DB, LLC
Inventors:
Branimir R. Vojcic, Farnaz Shayegh, Hakan Dogan, Wookwon Lee
Abstract: Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices such as iterative soft-input soft-output and list decoding of convolutional codes, Reed-Solomon codes and BCH codes. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics.
Type:
Grant
Filed:
August 12, 2016
Date of Patent:
November 20, 2018
Assignee:
LN2 DB, LLC
Inventors:
Branimir R Vojcic, Farnaz Shayegh, Hakan Dogan, Wookwon Lee
Abstract: Systems and methods for decoding block and concatenated codes are provided, including channel state information estimation such as by using optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics, including HD Radio receivers and systems.
Abstract: Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices such as iterative soft-input soft-output and list decoding of convolutional codes, Reed-Solomon codes and BCH codes. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics.
Type:
Grant
Filed:
November 16, 2015
Date of Patent:
July 4, 2017
Assignee:
LN2 DB, LLC
Inventors:
Branimir R Vojcic, Farnaz Shayegh, Hakan Dogan, Wookwon Lee
Abstract: Systems and methods for encoding and decoding check-irregular non-systematic IRA codes of messages in any communication or electronic system where capacity achieving coding is desired. According to these systems and methods, IRA coding strategies, including ones that employ capacity-approaching non-systematic IRA codes that are irregular and that exhibit a low error floor, are employed. These non-systematic IRA codes are particularly advantageous in scenarios in which up to half of coded bits could be lost due to channel impairments and/or where complementary coded bits are desired to transmit over two or more communications sub-channels. An encoder includes information bit repeaters and encoders, one or more interleavers, check node combiners, a check node by-pass and an accumulator. A decoder includes a demapper, one or more check node processors, an accumulator decoder, a bit decoder, and one or more interleavers/deinterleavers.
Type:
Grant
Filed:
January 27, 2015
Date of Patent:
November 29, 2016
Assignee:
LN2 DB, LLC
Inventors:
Branimir R Vojcic, Stylianos Papaharalabos
Abstract: Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics. Particular improvements are also provided for decoding HD Radio signals, including enhanced decoding of reference subcarriers based on soft-diversity combining, joint enhanced channel state information estimation, as well as iterative soft-input soft-output and list decoding of convolutional codes and Reed-Solomon codes. These and other improvements enhance the decoding of different logical channels in HD Radio systems.
Abstract: Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics. Particular improvements are also provided for decoding HD Radio signals, including enhanced decoding of reference subcarriers based on soft-diversity combining, joint enhanced channel state information estimation, as well as iterative soft-input soft-output and list decoding of convolutional codes and Reed-Solomon codes. These and other improvements enhance the decoding of different logical channels in HD Radio systems.