Patents Assigned to Loki Incorporated
-
Patent number: 8487506Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: GrantFiled: May 22, 2012Date of Patent: July 16, 2013Assignee: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Publication number: 20120242192Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: ApplicationFiled: May 22, 2012Publication date: September 27, 2012Applicant: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Patent number: 8188636Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: GrantFiled: August 26, 2011Date of Patent: May 29, 2012Assignee: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Publication number: 20120019078Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: ApplicationFiled: August 26, 2011Publication date: January 26, 2012Applicant: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Patent number: 8008843Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: GrantFiled: February 23, 2010Date of Patent: August 30, 2011Assignee: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Patent number: 7999445Abstract: A ferroelectric energy generator system comprises an explosive unit, a ferroelectric element, a first and a second output terminal, and a voltage-controlled switch. The explosive unit may include an explosive charge and a detonator which in combination may supply a shock wave. The ferroelectric element may include a third output terminal coupled to the voltage-controlled switch and a fourth output terminal coupled to the second output terminal. Upon receiving the shock wave, the ferroelectric element may be compressed and depolarized and, as a result, may generate a pulse of voltage between the third and the fourth output terminals. When the voltage reaches a breakdown level, the voltage-controlled switch may close and quickly deliver electric current to a load coupled to the ferroelectric energy generator system.Type: GrantFiled: July 13, 2009Date of Patent: August 16, 2011Assignee: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Publication number: 20110006642Abstract: A ferroelectric energy generator system comprises an explosive unit, a ferroelectric element, a first and a second output terminal, and a voltage-controlled switch. The explosive unit may include an explosive charge and a detonator which in combination may supply a shock wave. The ferroelectric element may include a third output terminal coupled to the voltage-controlled switch and a fourth output terminal coupled to the second output terminal. Upon receiving the shock wave, the ferroelectric element may be compressed and depolarized and, as a result, may generate a pulse of voltage between the third and the fourth output terminals. When the voltage reaches a breakdown level, the voltage-controlled switch may close and quickly deliver electric current to a load coupled to the ferroelectric energy generator system.Type: ApplicationFiled: July 13, 2009Publication date: January 13, 2011Applicant: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Publication number: 20110006614Abstract: A first energy generating system comprises a ferromagnetic generator coupled to a voltage controlled switch. The ferromagnetic generator includes a ferromagnetic element generating a magnetic field and positioned within a pulse generating coil and near an explosive charge. Detonation of the explosive charge decreases the magnetic field and induces a pulse of electric energy in the pulse generating coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes. A second energy generating system comprises a flux compression generator coupled to a voltage controlled switch. The flux compression generator includes a inductance coil generating a magnetic field within a metallic armature that includes an explosive charge. Detonation of the explosive charge changes the magnetic field and induces a pulse of electric energy in the inductance coil. When the magnitude of the electric energy reaches a certain level, the voltage controlled switch closes.Type: ApplicationFiled: February 23, 2010Publication date: January 13, 2011Applicant: LOKI INCORPORATEDInventors: Jason Baird, Sergey Shkuratov
-
Publication number: 20090256447Abstract: Embodiments of the present invention provide methods and energy generators that generate electrical energy through direct explosive shock wave depolarization of at least one ferroelectric element. In one embodiment, a generator (10) comprises a ferroelectric element (12), output terminals (14) coupled with the ferroelectric element (12), an explosive charge (16), and a detonator (18) coupled with the explosive charge (16). The detonator (18) is operable to detonate the explosive charge (16) to generate a shock wave that propagates at least partially through the ferroelectric element (12) to generate a voltage across at least two of the output terminals (14).Type: ApplicationFiled: June 24, 2009Publication date: October 15, 2009Applicant: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov
-
Patent number: 7560855Abstract: Embodiments of the present invention provide methods and energy generators that generate electrical energy through direct explosive shock wave depolarization of at least one ferroelectric element. In one embodiment, a generator (10) comprises a ferroelectric element (12), output terminals (14) coupled with the ferroelectric element (12), an explosive charge (16), and a detonator (18) coupled with the explosive charge (16). The detonator (18) is operable to detonate the explosive charge (16) to generate a shock wave that propagates at least partially through the ferroelectric element (12) to generate a voltage across at least two of the output terminals (14).Type: GrantFiled: July 31, 2006Date of Patent: July 14, 2009Assignee: Loki IncorporatedInventors: Jason Baird, Sergey Shkuratov