Patents Assigned to LONGITUDE FLASH MEMORY SOLUTIONS LTD.
  • Patent number: 11950412
    Abstract: A memory device is described. Generally, the device includes a string of memory transistors, a source select transistor coupled to a first end of the string of memory transistor and a drain select transistor coupled to a second end of the string of memory transistor. Each memory transistor includes a gate electrode formed adjacent to a charge trapping layer and there is neither a source nor a drain junction between adjacent pairs of memory transistors or between the memory transistors and source select transistor or drain select transistor. In one embodiment, the memory transistors are spaced apart from adjacent memory transistors and the source select transistor and drain select transistor, such that channels are formed therebetween based on a gate fringing effect associated with the memory transistors. Other embodiments are also described.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: April 2, 2024
    Assignee: Longitude Flash Memory Solutions LTD.
    Inventors: Youseok Suh, Sung-Yong Chung, Ya-Fen Lin, Yi-Ching Jean Wu
  • Patent number: 11784243
    Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: October 10, 2023
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD
    Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G Geha
  • Patent number: 11721733
    Abstract: Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the memory transistor comprises an oxide-nitride-oxide (ONO) stack on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO stack. Preferably, the gate electrode comprises a doped polysilicon layer, and the ONO stack comprises multi-layer charge storing layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. More preferably, the device also includes a metal oxide semiconductor (MOS) logic transistor formed on the same substrate, the logic transistor including a gate oxide and a high work function gate electrode. In certain embodiments, the dopant is a P+ dopant and the memory transistor comprises N-type (NMOS) silicon-oxide-nitride-oxide-silicon (SONOS) transistor while the logic transistor a P-type (PMOS) transistor.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 8, 2023
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswamy Ramkumar
  • Patent number: 11641745
    Abstract: Semiconductor devices and methods of manufacturing the same are provided. The semiconductor devices may have a non-volatile memory (NVM) transistor including a charge-trapping layer and a blocking dielectric, a field-effect transistor (FET) of a first type including a first gate dielectric having a first thickness, a FET of a second type including a second gate dielectric having a second thickness, and a FET of a third type including a third gate dielectric having a third thickness. In some embodiments, the first, second, and third gate dielectric includes a high dielectric constant (high-K) dielectric layer, and the first thickness is greater than the second thickness, the second thickness is greater than the third thickness. Other embodiments are also described.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: May 2, 2023
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventor: Krishnaswamy Ramkumar
  • Patent number: 11569254
    Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: January 31, 2023
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
  • Patent number: 11456365
    Abstract: An example memory device includes a channel positioned between and electrically connecting a first diffusion region and a second diffusion region, and a tunnel dielectric layer, a multi-layer charge trapping layer, and a blocking dielectric layer disposed between the gate structure and the channel. The multi-layer charge trapping layer includes a first dielectric layer disposed abutting a second dielectric layer and an anti-tunneling layer disposed between the first and second dielectric layers. The anti-tunneling layer includes an oxide layer. The first dielectric layer includes oxygen-rich nitride and the second dielectric layer includes oxygen-lean nitride.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: September 27, 2022
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswamy Ramkumar
  • Patent number: 11361826
    Abstract: A method of performing an operation on a non-volatile memory (NVM) cell of a memory device is disclosed. The pass transistor of the NVM cell is an asymmetric transistor including a source with a halo implant. The source of the pass transistor is coupled to a common source line (CSL) that is shared among NVM cells of a sector of NVM cells. The operation may be performed by applying a first signal to a word line (WLS) coupled to a gate of a memory transistor of the NVM cell and applying a second signal to a bit line (BL) coupled to a drain of the memory transistor of the NVM cell.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: June 14, 2022
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Sungkwon Lee, Venkatraman Prabhakar
  • Patent number: 11257912
    Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 22, 2022
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
  • Patent number: 11251189
    Abstract: A memory device is described. Generally, the device includes a string of memory transistors, a source select transistor coupled to a first end of the string of memory transistor and a drain select transistor coupled to a second end of the string of memory transistor. Each memory transistor includes a gate electrode formed adjacent to a charge trapping layer and there is neither a source nor a drain junction between adjacent pairs of memory transistors or between the memory transistors and source select transistor or drain select transistor. In one embodiment, the memory transistors are spaced apart from adjacent memory transistors and the source select transistor and drain select transistor, such that channels are formed therebetween based on a gate fringing effect associated with the memory transistors. Other embodiments are also described.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 15, 2022
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Youseok Suh, Sung-Yong Chung, Ya-Fen Lin, Yi-Ching Jean Wu
  • Patent number: 11222965
    Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: January 11, 2022
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD
    Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G Geha
  • Patent number: 11056565
    Abstract: Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the memory transistor comprises an oxide-nitride-oxide (ONO) stack on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO stack. Preferably, the gate electrode comprises a doped polysilicon layer, and the ONO stack comprises multi-layer charge storing layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. More preferably, the device also includes a metal oxide semiconductor (MOS) logic transistor formed on the same substrate, the logic transistor including a gate oxide and a high work function gate electrode. In certain embodiments, the dopant is a P+ dopant and the memory transistor comprises N-type (NMOS) silicon-oxide-nitride-oxide-silicon (SONOS) transistor while the logic transistor a P-type (PMOS) transistor.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 6, 2021
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswamy Ramkumar
  • Patent number: 10998019
    Abstract: Systems and methods for driving a non-volatile memory device in a standby operating condition are disclosed. A standby detection circuit detects whether the non-volatile memory system is in a standby condition. In response to determining that the non-volatile memory system is in a standby condition, a bias control circuit provides bias currents to drivers of the non-volatile memory system in a standby mode.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 4, 2021
    Assignee: Longitude Flash Memory Solutions, Ltd.
    Inventors: Cristinel Zonte, Vijay Raghavan, Iulian C. Gradinariu, Gary Peter Moscaluk, Roger Bettman, Vineet Argrawal, Samuel Leshner
  • Patent number: 10903325
    Abstract: An example memory device includes a channel positioned between and electrically connecting a first diffusion region and a second diffusion region, and a tunnel dielectric layer, a multi-layer charge trapping layer, and a blocking dielectric layer disposed between the gate structure and the channel. The multi-layer charge trapping layer includes a first dielectric layer disposed abutting a second dielectric layer and an anti-tunneling layer disposed between the first and second dielectric layers. The anti-tunneling layer includes an oxide layer. The first dielectric layer includes oxygen-rich nitride and the second dielectric layer includes oxygen-lean nitride.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: January 26, 2021
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswarny Ramkumar
  • Patent number: 10903068
    Abstract: A semiconductor device including an oxide-nitride-oxide (ONO) structure having a multi-layer charge storing layer and methods of forming the same are provided. Generally, the method involves: (i) forming a first oxide layer of the ONO structure; (ii) forming a multi-layer charge storing layer comprising nitride on a surface of the first oxide layer; and (iii) forming a second oxide layer of the ONO structure on a surface of the multi-layer charge storing layer. Preferably, the charge storing layer comprises at least two silicon oxynitride layers having differing stochiometric compositions of Oxygen, Nitrogen and/or Silicon. More preferably, the ONO structure is part of a silicon-oxide-nitride-oxide-silicon (SONOS) structure and the semiconductor device is a SONOS memory transistor. Other embodiments are also disclosed.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 26, 2021
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
  • Patent number: 10903342
    Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: January 26, 2021
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
  • Patent number: 10896973
    Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: January 19, 2021
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
  • Patent number: 10854625
    Abstract: A method of fabricating a memory device is described. Generally, the method includes: forming on a surface of a substrate a dielectric stack including a tunneling dielectric and a charge-trapping layer overlying the tunneling dielectric; forming a cap layer overlying the dielectric stack, wherein the cap layer comprises a multi-layer cap layer including at least a first cap layer overlying the charge-trapping layer, and a second cap layer overlying the first cap layer; patterning the cap layer and the dielectric stack to form a gate stack of a memory device; removing the second cap layer; and performing an oxidation process to oxidize the first cap layer to form a blocking oxide overlying the charge-trapping layer, wherein the oxidation process consumes the first cap layer. Other embodiments are also described.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 1, 2020
    Assignee: Longitude Flash Memory Solutions Ltd.
    Inventor: Krishnaswamy Ramkumar
  • Patent number: 10790364
    Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 29, 2020
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
  • Patent number: 10784356
    Abstract: A method to integrate silicon-oxide-nitride-oxide-silicon (SONOS) transistors into a complementary metal-oxide-semiconductor (CMOS) flow including a triple gate oxide structure. The memory device may include a non-volatile memory (NVM) transistor that has a charge-trapping layer and a blocking dielectric, a first field-effect transistor (FET) including a first gate oxide of a first thickness, a second FET including a second gate oxide of a second thickness, a third FET including a third gate oxide of a third thickness, in which the first thickness is greater than the second thickness and the second thickness is greater than the third thickness.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: September 22, 2020
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Krishnaswamy Ramkumar, Igor Kouznetsov, Venkatraman Prabhakar, Ali Keshavarzi
  • Patent number: 10784277
    Abstract: A memory device that includes a non-volatile memory (NVM) transistor disposed in a first region of a substrate. The NVM transistor includes a first gate including a first type of conductor material. The memory device further includes a first type of low voltage field-effect transistor (LV FET) and an input/out field-effect transistor (I/O FET) disposed in a second region of the substrate. The LV FET includes a second gate comprising a second type of conductor material, the I/O FET includes a third gate comprising a second type of conductor material, and the first and second conductor materials are different. Other embodiments are also described.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: September 22, 2020
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventor: Krishnaswamy Ramkumar