Abstract: A vehicle auxiliary power system includes a generator configured to be mechanically coupled to a power takeoff (PTO) of a vehicle via an offset gearbox. The generator produces AC power that is delivered to one or more power connection interfaces capable of industrial use. In some examples, the AC power may be converted to DC power for use by DC electronic systems or for charging one or more batteries. The vehicle auxiliary power system may include charge controllers, ECMs/ECUs, and other computing systems. As a result, a user may have an on-demand high-power electrical supply without the need of a second engine.
Abstract: A system for PTO-driven refrigeration includes a generator that is configured to be mechanically connected to a power takeoff (PTO) and a converter that is configured to receive AC power from the generator and is operable to convert the AC power to DC power. The generator is connected to a charge controller that is connected to an energy storage element. The energy storage element is connected to a controller configured to receive DC power and provide AC power to a motor. The motor may be mechanically connectable to a refrigeration system. The energy storage element is further configured to receive power from a second charge controller that receives power via an AC power input or solar system. In some examples, the energy storage element provides power to auxiliary systems within a cab of a semi-truck.
Abstract: A computer-controlled motorized pump system is provided. A generator is mechanically connected to a power takeoff. A first controller receives AC power from the generator and converts the AC power to DC power and provides DC power to a computing system that has one or more processors and one or more computer-readable hardware storage media and a user interface. A second controller is directly coupled to the first controller and provides AC power to a motor. The motor is mechanically connected to a pump, and the motor is in communication with, or controlled by, the computing system.
Abstract: A system for PTO-driven refrigeration includes a generator that is configured to be mechanically connected to a power takeoff (PTO) and a converter that is configured to receive AC power from the generator and is operable to convert the AC power to DC power. The generator is connected to a charge controller that is connected to an energy storage element. The energy storage element is connected to a controller configured to receive DC power and provide AC power to a motor. The motor may be mechanically connectable to a refrigeration system. The energy storage element is further configured to receive power from a second charge controller that receives power via an AC power input or solar system.
Abstract: A computer-controlled motorized pump system is provided. A generator is mechanically connected to a power takeoff. A first controller receives AC power from the generator and converts the AC power to DC power and provides DC power to a computing system that has one or more processors and one or more computer-readable hardware storage media and a user interface. A second controller is directly coupled to the first controller and provides AC power to a motor. The motor is mechanically connected to a pump, and the motor is in communication with, or controlled by, the computing system.