Patents Assigned to LUDLUM MEASUREMENTS, INC.
  • Patent number: 11725137
    Abstract: A plastic scintillator includes a polymer matrix, an aliphatic additive present in the polymer matrix in an effective amount to impart fog resistance to the plastic scintillator, and at least one fluorescent dye in the polymer matrix, the dye being effective to provide scintillation upon exposure to radiation. The effective amount of the aliphatic additive is in a range of greater than 0 weight percent up to 5 weight percent relative to the total weight of the plastic scintillator. Moreover, the aliphatic additive has a structure comprising up to 300 repeat units.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: August 15, 2023
    Assignees: Lawrence Livermore National Security, LLC, Ludlum Measurements, Inc., National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Andrew Neil Mabe, M Leslie Carman, Stephen Anthony Payne, Natalia P. Zaitseva, Charles R. Hurlbut, Terence C. O'Brien, Kyle Ray Shipp, Nicholas Richard Myllenbeck
  • Patent number: 11614384
    Abstract: An enclosure or housing for an air monitoring instrument package for mounting on the roof or other surface on the outside of vehicles such as cars, trucks, buses, trams, trains and ships. By measuring air pollutants from moving vehicles, it is possible to explore the distribution of air pollutants throughout a city or rural area for the identification of sources of different pollutants, estimating human exposures to air pollutants, and mapping air pollutants with high resolution. The disclosed device provides continuous sampling of outside air while simultaneously protecting the delicate instruments from weather elements such as high wind, rain, snow, sleet and hail. The design also allows a nearly constant flow rate of sampled air independent of vehicle velocity. An optional impaction region further reduces transmission of mist and large particles to the chamber containing the measurement package.
    Type: Grant
    Filed: October 3, 2020
    Date of Patent: March 28, 2023
    Assignee: LUDLUM MEASUREMENTS, INC.
    Inventors: John William Birks, Peter Christian Andersen, Craig Joseph Williford, Andrew Allen Turnipseed
  • Publication number: 20210340437
    Abstract: A plastic scintillator includes a polymer matrix, an aliphatic additive present in the polymer matrix in an effective amount to impart fog resistance to the plastic scintillator, and at least one fluorescent dye in the polymer matrix, the dye being effective to provide scintillation upon exposure to radiation. The effective amount of the aliphatic additive is in a range of greater than 0 weight percent up to 5 weight percent relative to the total weight of the plastic scintillator. Moreover, the aliphatic additive has a structure comprising up to 300 repeat units.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 4, 2021
    Applicants: Lawrence Livermore National Security, LLC, National Technology & Engineering Solutions of Sandia, LLC, Ludlum Measurements, Inc., National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Andrew Neil Mabe, M Leslie Carman, Stephen Anthony Payne, Natalia P. Zaitseva, Charles R. Hurlbut, Terence C. O'Brien, Kyle Ray Shipp, Nicholas Richard Myllenbeck
  • Patent number: 10684215
    Abstract: The present invention makes use of a modular Folded Tubular Photometer to measure the concentrations of gas-phase species and/or particles, including especially air pollutants such as ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and black carbon particulate matter, by means of absorbance of ultraviolet (UV), visible or infrared (IR) light. The optical bench makes use of modular components (tubes and mirror assemblies) that allow construction of path lengths of up to 2 meters or more while maintaining low detection cell volumes. The long path lengths, low cell volumes, and the innovation of pressure equalization during the absorbance measurements enable sensitive detection of ambient air pollutants down to low part-per-billion levels or less for gas species, and extinctions down to 1 Mm?1 or less for particulate matter, corresponding to ˜0.13 ?g/m3 or less for black carbon particulates.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: June 16, 2020
    Assignee: LUDLUM MEASUREMENTS, INC.
    Inventors: John William Birks, Peter Christian Andersen, Andrew Allen Turnipseed, Craig Joseph Williford
  • Patent number: 10295517
    Abstract: The present invention provides a means of greatly reducing interferences from mercury vapor, UV-absorbing compounds and water vapor in the measurement of ozone by UV absorbance. A heated graphite scrubber destroys greater than 99% of ozone passing through it while reducing biases from typical atmospheric UV-absorbing interferents by large factors compared to conventional ozone scrubbers. Substitution of a heated graphite scrubber in place of traditional ozone scrubbers such as hopcalite, metal oxides and heated silver scrubbers, results in a more accurate measurement of ozone by reducing the responses to UV-absorbing interferences and water vapor. The heated graphite scrubber also may be used in combination with other ozone sensors, such as electrochemical and HMOS sensors, to provide a reference measurement with ozone selectively removed and thus greatly reduce contributions from interfering species in those measurement devices as well.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 21, 2019
    Assignee: LUDLUM MEASUREMENTS, INC.
    Inventors: John W. Birks, Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford
  • Patent number: 10207927
    Abstract: The present invention provides a means of producing nitric oxide (NO) by photolysis of nitrous oxide (N2O) at ultraviolet wavelengths. One application is the production of a known concentration of NO in a diluent gas for calibration of analytical instruments that measure nitric oxide in gases such as exhaled breath, ambient air and automobile exhaust. A potentially important medical application is the production of NO for inhalation therapy, an advantage being that very little toxic NO2 gas is produced. The method is useful for producing NO for industrial applications as well. Advantages of this method of NO production include the use of a single, inexpensive, readily available reagent gas of very low toxicity. Furthermore, the concentration of NO produced can be easily controlled by varying the ultraviolet (UV) lamp intensity and relative gas flow rates.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: February 19, 2019
    Assignee: LUDLUM MEASUREMENTS, INC.
    Inventors: Peter C. Andersen, Craig J. Williford, John W. Birks