Patents Assigned to Ludwig-Maximilians-Universitaet
  • Patent number: 11958880
    Abstract: The present invention provides means and methods for equipping a polypeptide of interest at its C-terminus with a versatile adaptor amino acid that allows the functionalization of the polypeptide of interest.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 16, 2024
    Assignees: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Heinrich Leonhardt, Jonas Helma, Dominik Schumacher, Christian Hackenberger
  • Patent number: 11746124
    Abstract: Disclosed are novel conjugates and processes for the preparation thereof.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: September 5, 2023
    Assignees: FORSCHUNGSVERBUND BERLIN E.V., LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Christian Hackenberger, Marc André Kasper, Maria Glanz, Tom Sauer, Dominik Schumacher, Jonas Helma-Smets, Heinrich Leonhardt, Andreas Stengl
  • Patent number: 11723922
    Abstract: The present invention relates to CXCR6-transduced (a) T cell(s) such as (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) ?? T cell(s) or (a) natural killer (NK) T cell(s) for targeted tumor therapy, nucleic acid sequences, vectors capable of transducing such (a) T cell(s), (a) transduced T cell(s) carrying the nucleic acid sequences or vectors of the present invention, methods and kits comprising the nucleic acid sequences or vectors of the present invention. The invention also provides the use of said transduced T cell(s) in a method for the treatment of diseases characterized by CXCL16 overexpression as well as a pharmaceutical composition/medicament comprising (a) transduced T cell(s) expressing the CXCR6 for use in methods of treating diseases characterized by CXCL16 overexpression.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 15, 2023
    Assignee: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Sebastian Kobold, Stefan Endres, Moritz Rapp, Simon Grassmann
  • Patent number: 11552442
    Abstract: A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: January 10, 2023
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Oleg Pronin, Ferenc Krausz, Sebastian Groebmeyer, Jonathan Brons
  • Patent number: 11530976
    Abstract: A particle analysis method and apparatus, including a spectrometry-based analysis of a fluid sample (1), comprises the steps of creating a sample light beam S and a probe light beam P with a light source device (10) and periodically varying a relative phase between the sample and probe light beams S, P with a phase modulator device (20), irradiating the fluid sample (1) with the sample light beam S, detecting the sample and probe light beams S, P with a detector device (40), and providing a spectral response of the at least one particle (3), wherein the light source device (10) comprises at least one broadband source, which has an emission spectrum covering a mid-infrared MIR frequency range, and the phase modulator device (20) varies the relative phase with a scanning period equal to or below the irradiation period of irradiating the at least one particle (3, 4).
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: December 20, 2022
    Assignees: Max-Planck-Fesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Ferenc Krausz, Ioachim Pupeza, Mihaela Zigman Kohlmaier, Marinus Huber
  • Patent number: 11513076
    Abstract: The present invention relates to a method and a DNA nanostructure for detecting a target structure. In particular, the present invention relates to a DNA nanostructure, which ensures a preferably linear dependence on the number of marker molecules and the measurement signal regardless of the physical arrangement of a plurality of such DNA nanostructures by virtue of the skilled selection of the shape of the DNA nanostructure and the placement of the marker molecules attached to it. The invention additionally relates to the use of said DNA nanostructures and other nanoreporters, preferably in combination with adapters which bind specifically to target molecules, in a method for quantifying a plurality of target molecules, preferably in a simultaneous manner, using a multiplex method.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: November 29, 2022
    Assignee: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Heinrich Grabmayr, Johannes Benedikt Woehrstein
  • Publication number: 20220332737
    Abstract: The present invention relates to novel hydrolytically stable carbon-cyclic 5-aza-2-deoxycytidine and carbocyclic 5-aza-cytidine compounds and pro-drugs thereof as hypomethylating agents.
    Type: Application
    Filed: June 5, 2019
    Publication date: October 20, 2022
    Applicant: Ludwig-Maximilians-Universität München
    Inventor: Thomas CARELL
  • Publication number: 20220296718
    Abstract: The present invention relates to excipients for stabilizing active agents, in particular peptides, polypeptides, nucleic acids, viruses, virus-like particles, proton pump inhibitors and antibiotics. The excipient reduces aggregate and/or particle formation in preparations comprising said agents. The excipient is a diamide of a dicarboxylic acid comprising at least one N—H amido group, at least one unsubstituted or substituted N-hydroxyethylamido group and/or at least one unsubstituted N-hydroxymethylamido group. In particular, the excipient is N,N,N?,N?-tetrakis-(2-hydroxyethyl) adipinic acid amide.
    Type: Application
    Filed: July 10, 2020
    Publication date: September 22, 2022
    Applicants: Ludwig-Maximilians-Universität München, Danmarks Tekniske Universitet (DTU)
    Inventors: Gerhard WINTER, Andreas TOSSTORFF, Günther PETERS
  • Publication number: 20220265782
    Abstract: The present invention relates to compositions comprising a therapeutic protein with enhanced stability, which comprise a piperazine- or morpholine-containing zwitterionic buffering substance, such as HEPES, in particular when used out of the common pH range. The compositions of the invention are particularly useful for topical administration The present invention further relates to the use of said compositions for treating bacterial infections, e.g. bacterial infections caused by Staphylococcus aureus such as methicillin-resistant Staphylococcus aureus (MRSA). The present invention further relates to the use of said compositions for preventing or eliminating nasal bacterial colonization or bacterial colonization of the skin.
    Type: Application
    Filed: July 16, 2020
    Publication date: August 25, 2022
    Applicants: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, HYPHARM GMBH
    Inventors: Gerhard WINTER, Simon EISELE, Sonja MOLINARO, Wolfgang MUTTER
  • Patent number: 11422094
    Abstract: The analysis of data from fluorescence microscopy is disclosed, more especially fluorescence fluctuation microscopy, being a correlation analysis of fluctuation of the fluorescence intensity enabling quantitative and dynamic information capture. In particular the analysis is described of characteristics such as concentrations, mobility, interactions, stoichiometry, etc. of mixtures of particular that are fluorescently labeled with differently colored fluorophores having different excitation/emission spectra using fluctuation microscopy.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 23, 2022
    Assignees: Universiteit Hasselt, Ludwig-Maximilians-Universität München
    Inventors: Jelle Hendrix, Nick Smisdom, Don Lamb, Waldemar Schrimpf
  • Patent number: 11401298
    Abstract: The present invention provides means and methods for equipping a polypeptide of interest at its C-terminus with a versatile adaptor amino acid that allows the functionalization of the polypeptide of interest.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 2, 2022
    Assignees: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Heinrich Leonhardt, Jonas Helma, Dominik Schumacher, Christian Hackenberger
  • Patent number: 11229700
    Abstract: The present invention relates to a novel molecule comprising three binding sites with specificity for a tumor cell, for an effector cell and for a checkpoint molecule, respectively. Moreover, the present invention relates to a pharmaceutical composition comprising such a molecule and to uses of such a molecule.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: January 25, 2022
    Assignee: LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Karl-Peter Hopfner, Marion Subklewe, Nadine Magauer, Nadja Fenn
  • Patent number: 11199496
    Abstract: A method of measuring a polarization response of a sample (1), in particular a biological sample, comprises the steps of generating a sequence of excitation waves (2), irradiating the sample (1) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the sample (1), so that a sequence of sample waves (3) is generated each including a superposition of a sample main pulse and a sample global molecular fingerprint (GMF) wave (EGMF(sample)(t)), irradiating a reference sample (1A) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the reference sample (1A), so that a sequence of reference waves (3A) is generated each including a superposition of a reference main pulse and a reference GMF wave (EGMF(ref)(t)), optically separating a difference of the sample waves (3) and reference waves (3A) from GMF wave contributions which are common to both of the sample waves (3) and reference waves (3A) in space and/or time, and detec
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: December 14, 2021
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Ferenc Krausz, Hanieh Fattahi, Marinus Huber, Joachim Pupeza, Mihaela Zigman Kohlmaier
  • Patent number: 11180518
    Abstract: The present invention relates to a compound represented by the formula (E) which is useful for treating or preventing melanoma.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 23, 2021
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V., LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Dorothea Becker, Thomas M. Jovin, Christian Griesinger, Andrei Leonov, Sergey Ryazanov, Armin Giese, Tiago F. Outeiro, Diana F. Lazaro, Michael P. Schön, Margarete Schön
  • Patent number: 11161873
    Abstract: Disclosed are novel conjugates and processes for the preparation thereof. A process tor the preparation of alkene- or alkyne-phosphonamidates comprises the steps of (I) reacting a compound of formula (III), with an azide of formula (IV), to prepare a compound of formula (V), reacting a compound of formula (V) with a thiol-containing molecule of formula (VI), resulting in a compound of formula (VII).
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: November 2, 2021
    Assignees: FORSCHUNGSVERBUND BERLIN E.V., LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
    Inventors: Christian Hackenberger, Marc André Kasper, Maria Glanz, Tom Sauer, Dominik Schumacher, Jonas Helma-Smets, Heinrich Leonhardt, Andreas Stengl
  • Publication number: 20210246189
    Abstract: The present invention relates to a peptide comprising a reversible affinity tag (A); and a functionalization tag (F), wherein the peptide is linked to a target of interest (T). The peptide is useful as a versatile protein tag. The invention further provides structures comprising the peptide, nucleic acids, vectors, and host cells. Further, the invention provides methods of producing or using the peptide.
    Type: Application
    Filed: August 30, 2019
    Publication date: August 12, 2021
    Applicants: TECHNISCHE UNIVERSITAET MUENCHEN, LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Dirk BUSCH, Manuel EFFENBERGER, Heinrich LEONHARDT, Andreas STENGL
  • Patent number: 10941200
    Abstract: The present invention relates to a binding molecule having a binding site within the ectodomain of the triggering receptor expressed on myeloid cells 2 (TREM2), wherein the binding molecule inhibits TREM2 cleavage. Said binding molecule is particularly useful for treating and/or preventing a neurological disorder, such as a neurodegenerative disorder. Also encompassed by the present invention is a pharmaceutical composition for use in treating and/or preventing a neurological disorder, wherein the pharmaceutical composition comprises the binding molecule of the present invention. Neurodegenerative disorders that may be treated and/or prevented by using the binding molecule of the present invention include Alzheimer's disease (AD), Frontotemporal lobar degeneration (FTLD), FTLD-like syndrome, Parkinson's disease, Nasu-Hakola disease, Multiple sclerosis (MS), Huntington disease, immune-mediated neuropathies, or Amyotrophic lateral sclerosis (ALS).
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: March 9, 2021
    Assignees: Deutsches Zentrum Für Neurodegenerative Erkrankungen EV, Ludwig-Maximilians-Universität München
    Inventors: Christian Haass, Gernot Kleinberger, Kai Schlepckow
  • Patent number: 10855049
    Abstract: A pulse laser apparatus (100) for creating laser pulses (1), in particular soliton laser pulses (1), based on Kerr lens mode locking of a circulating light field in an oscillator cavity (10), comprises at least two resonator mirrors (11, 12, . . .
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 1, 2020
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Oleg Pronin, Ferenc Krausz, Jonathan Brons
  • Patent number: 10851411
    Abstract: The present invention relates to methods of determining the sequence of nucleotides in target nucleic acid molecules. Thus, the invention relates to methods of sub-unit sequencing. The methods comprise the use of identification nucleic acid detection entities which specifically hybridize to the target nucleic acid, bind identification tags and have localization tags transiently bind thereto.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 1, 2020
    Assignees: Ludwig-Maximilians-Universität München, XGenomes Corp.
    Inventors: Johannes B. Wöhrstein, Kalim Mir, Ralf Jungmann, Florian Schüder
  • Publication number: 20200348234
    Abstract: The analysis of data from fluorescence microscopy is disclosed, more especially fluorescence fluctuation microscopy, being a correlation analysis of fluctuation of the fluorescence intensity enabling quantitative and dynamic information capture. In particular the analysis is described of characteristics such as concentrations, mobility, interactions, stoichiometry, etc. of mixtures of particular that are fluorescently labeled with differently colored fluorophores having different excitation/emission spectra using fluctuation microscopy.
    Type: Application
    Filed: January 11, 2019
    Publication date: November 5, 2020
    Applicants: Universiteit Hasselt, Ludwig-Maximilians-Universität München
    Inventors: Jelle Hendrix, Nick Smisdom, Don Lamb, Waldemar Schrimpf