Patents Assigned to Lummus Technology Inc.
  • Publication number: 20140100405
    Abstract: A butadiene extraction processes designed for flexible operations, with or without a compressor, is disclosed. The ability to run at both high and low pressures provides added process flexibility.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 10, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Robert J. Brummer, Thomas Alexander Dwyer
  • Publication number: 20140100399
    Abstract: A process for recovering butadiene from a C4 fraction is disclosed. The process may include: contacting a mixed C4 stream comprising butane, butene, and butadiene, with a solvent comprising an organic solvent and water in a butadiene pre-absorber column to recover an overheads fraction comprising at least a portion of the butane, butene, and water, and a first bottoms fraction comprising the organic solvent, butadiene, and at least a portion of the butene; and feeding the first bottoms fraction to a butadiene extraction unit to recover a butene fraction, a crude butadiene fraction, and a solvent fraction.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 10, 2014
    Applicant: Lummus Technology Inc.
    Inventors: Robert John Brummer, Kevin John Schwint, Thomas Alexander Dwyer
  • Patent number: 8685151
    Abstract: The present disclosure relates generally to contaminant removal from gas streams. In certain embodiments, the present disclosure relates to a process for removing one or more contaminants from a gas stream via contact with a regenerable sorbent at high temperature and pressure, utilizing a unique arrangement of reactors operating in parallel.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 1, 2014
    Assignee: Lummus Technology Inc.
    Inventors: Ronald E. Brown, Daniel T. Fernald
  • Publication number: 20140082999
    Abstract: A process for producing coke that may include: heating a coker feedstock to a coking temperature to produce a heated coker feedstock; feeding the heated coker feedstock to a coking drum; feeding a coking additive, such as at least one hydroconversion or hydrocracking catalyst, to the coking drum; and subjecting the heated coker feedstock to thermal cracking in the coking drum to crack a portion of the coker feedstock to produce a cracked vapor product and produce a coke product.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventor: Ahmad Faegh
  • Publication number: 20140081061
    Abstract: A process for producing propylene is disclosed, including: fractionating a mixed C4 hydrocarbon stream to recover a first fraction comprising isobutene and a second fraction comprising 2-butene; contacting the first fraction with a first metathesis catalyst in a first metathesis reaction zone; recovering an effluent from the first metathesis reaction zone comprising at least one of ethylene, propylene, unreacted isobutene, C5 olefins, and C6 olefins; contacting the second fraction and the ethylene in the effluent with a second metathesis catalyst in a second metathesis reaction zone; recovering an effluent from the second reaction zone comprising at least one of unreacted ethylene, propylene, unreacted 2-butene, fractionating the effluent from the first metathesis reaction zone and the effluent from the second metathesis reaction zone to recover an ethylene fraction, a propylene fraction, one or more C4 fractions, and a fraction comprising at least one of C5 and C6 olefins.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 20, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Stephen J. Stanley, Robert J. Gartside, Thulusidas Chellppannair
  • Publication number: 20140081066
    Abstract: A process for recovering butadiene from a C4 fraction is disclosed. The process may include: contacting a mixed C4 stream comprising butane, butene, and butadiene, with a solvent comprising an organic solvent and water in a butadiene pre-absorber column to recover an overheads fraction comprising at least a portion of the butane, butene, and water, and a first bottoms fraction comprising the organic solvent, butadiene, and at least a portion of the butene; and feeding the first bottoms fraction to a butadiene extraction unit to recover a butene fraction, a crude butadiene fraction, and a solvent fraction.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 20, 2014
    Applicant: Lummus Technology Inc.
    Inventors: Kevin John Schwint, Robert John Brummer
  • Publication number: 20140066681
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Publication number: 20140050632
    Abstract: Improvements in a gasification system and process for gasifying carbonaceous feedstock with improved energy efficiency. Improved methods and systems for more efficient removal of particulates from a raw synthesis gas while simultaneously providing a novel mechanism for fluxing agent addition to the gasification reactor. A conditioning agent, in the form of coarse fluxing agent particles, is added to the raw synthesis gas upstream from the particle filtration unit. The conditioning agent allows more rapid turnaround of the filtration unit following filter element replacement, extend filter life, facilitates the removal of filter cake from the particle filters, and combines with removed filter cake for recycling to the gasifier. Addition of fluxing agent via this route eliminates the need to premix fluxing agent with the carbonaceous feedstock, thereby maximizing the rate of feedstock addition to the gasification reactor.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventor: Emile J. Troxclair
  • Patent number: 8647415
    Abstract: The present disclosure provides for processes including a coke catcher that may be emptied during normal operation or steam standby, thereby overcoming the deficiencies in the prior design as discussed above, the coke catchers and process flows disclosed herein protecting the secondary transfer line exchanger from foulant while not limiting the time between heater cold shutdowns. The designs consider the impact of decoking options, such as when decoking to a firebox as opposed to a decoking drum. Further, flow and cost considerations are addressed in various embodiments; for example, decoke valves are fairly expensive, and process flows disclosed herein may provide for relocation of the decoke valve to facilitate coke catcher operations while not adding an expensive valve to the overall operating flow scheme.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 11, 2014
    Assignee: Lummus Technology Inc.
    Inventors: Stephen De Haan, Peter Kin-Lee Tam
  • Publication number: 20140034549
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari
  • Publication number: 20140024873
    Abstract: The present disclosure provides for processes including a coke catcher that may be emptied during normal operation or steam standby, thereby overcoming the deficiencies in the prior design as discussed above, the coke catchers and process flows disclosed herein protecting the secondary transfer line exchanger from foulant while not limiting the time between heater cold shutdowns. The designs consider the impact of decoking options, such as when decoking to a firebox as opposed to a decoking drum. Further, flow and cost considerations are addressed in various embodiments; for example, decoke valves are fairly expensive, and process flows disclosed herein may provide for relocation of the decoke valve to facilitate coke catcher operations while not adding an expensive valve to the overall operating flow scheme.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Stephen De Haan, Peter Kin-Lee Tam
  • Publication number: 20140014555
    Abstract: A fluid catalytic cracking apparatus and process is disclosed, providing for efficient conversion of heavy hydrocarbon feeds to light olefins, aromatics, and gasoline. A countercurrent flow reactor operating in bubbling or turbulent fluidization regimes is integrated with a fluid catalytic cracking riser reactor. A heavy hydrocarbon feed is catalytically cracked to naphtha and light olefins in the riser reactor, a co-current flow reactor. To enhance the yields and selectivity to light olefins, cracked hydrocarbon products from the riser reactor, such as C4 and naphtha range hydrocarbons, may be recycled and processed in the countercurrent flow reactor. The integration of the countercurrent flow reactor with a conventional FCC riser reactor and catalyst regeneration system may overcome heat balance issues commonly associated with two-stage cracking processes, may substantially increase the overall conversion and light olefins yield, and/or may increases the capability to process heavier feedstocks.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Rama Rao Marri, Dalip Singh Soni, Pramod Kumar
  • Publication number: 20140018584
    Abstract: A process for the conversion of linear pentenes to propylene is disclosed. The process may include feeding hydrogen and a C5-olefin containing stream comprising linear pentenes, dienes, acetylenes, and cyclopentene to a catalytic distillation reactor system. Concurrently in the catalytic distillation reactor system, the acetylenes and dienes may be hydrogenated and the C5-olefin containing stream may be fractionated, thereby recovering an overheads fraction comprising the linear pentenes, a side draw fraction comprising the cyclopentene, and a bottoms fraction. In some embodiments, at least a portion of the overheads fraction may then be fed to a metathesis reactor for converting the linear pentenes to propylene.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Yongqiang Xu, Gary G. Podrebarac
  • Patent number: 8627681
    Abstract: A process for recovery of natural gas liquids is disclosed, the process including: fractionating a gas stream comprising nitrogen, methane, ethane, and propane and other C3+ hydrocarbons into at least two fractions including a light fraction comprising nitrogen, methane, ethane, and propane, and a heavy fraction comprising propane and other C3+ hydrocarbons; separating the light fraction into at least two fractions including a nitrogen-enriched fraction and a nitrogen-depleted fraction in a first separator; separating the nitrogen-depleted fraction into a propane-enriched fraction and a propane-depleted fraction in a second separator; feeding at least a portion of the propane-enriched fraction to the fractionating as a reflux; recycling at least a portion of the propane-depleted fraction to the first separator. In some embodiments, the nitrogen-enriched fraction may be separated in a nitrogen removal unit to produce a nitrogen-depleted natural gas stream and a nitrogen-enriched natural gas stream.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 14, 2014
    Assignee: Lummus Technology Inc.
    Inventor: Michael Malsam
  • Patent number: 8628601
    Abstract: A process for the recovery of carbon dioxide from a gas mixture that includes pretreating a gas mixture comprising carbon dioxide, water vapor, and one or more light gases in a pretreating system to form a cooled gas mixture, fractionating the cooled gas mixture to recover a bottoms fraction comprising carbon dioxide and an overheads fraction comprising carbon dioxide and the light gases, passing the overheads fraction over a membrane selective to carbon dioxide to separate a carbon dioxide permeate from a residue gas comprising the light gases, recycling the carbon dioxide permeate to the pretreating system, and recovering at least a portion of the bottoms fraction as a purified carbon dioxide product stream is described.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 14, 2014
    Assignee: Lummus Technology Inc.
    Inventors: Loren E Gearhart, Sanjiv N Patel, David R Koch
  • Publication number: 20130312611
    Abstract: The present disclosure relates generally to contaminant removal from gas streams. In certain embodiments, the present disclosure relates to a process for removing one or more contaminants from a gas stream via contact with a regenerable sorbent at high temperature and pressure, utilizing a unique arrangement of reactors operating in parallel.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: Lummus Technology Inc.
    Inventors: Ronald E. Brown, Daniel T. Fernald
  • Patent number: 8591725
    Abstract: A method for selecting a solvent or mixture of solvents useful for mitigating deposit formation, cleaning existing deposits, and/or decreasing the rate of deposit formation is disclosed. Decreasing the rate at which deposits may form and/or increasing the rate at which deposits may be removed can dramatically improve process economics (e.g., decreasing down time as a result of deposit formation). In one aspect, embodiments disclosed herein relate to a process for dispersing foulants in a hydrocarbon stream, including the steps of: determining a nature of foulants in a hydrocarbon stream; selecting a solvent or a mixture of solvents suitable to disperse the foulants based upon the determined nature; and contacting the foulants with the selected solvent or mixture of solvents.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: November 26, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Kandasamy Meenakshi Sundaram, Ujjal K. Mukherjee, Ronald M. Venner
  • Patent number: 8586813
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 19, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Patent number: 8580151
    Abstract: Improvements in a gasification system and process for gasifying carbonaceous feedstock with improved energy efficiency. Improved methods and systems for more efficient removal of particulates from a raw synthesis gas while simultaneously providing a novel mechanism for fluxing agent addition to the gasification reactor. A conditioning agent, in the form of coarse fluxing agent particles, is added to the raw synthesis gas upstream from the particle filtration unit. The conditioning agent allows more rapid turnaround of the filtration unit following filter element replacement, extend filter life, facilitates the removal of filter cake from the particle filters, and combines with removed filter cake for recycling to the gasifier. Addition of fluxing agent via this route eliminates the need to premix fluxing agent with the carbonaceous feedstock, thereby maximizing the rate of feedstock addition to the gasification reactor.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Lummus Technology Inc.
    Inventor: Emile J. Troxclair, III
  • Publication number: 20130252804
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicants: BASF CORPORATION, LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool