Abstract: A portable in-vitro (PIV) diagnostic detector operable to perform a fluorescence assay on a sample in one or more detection chambers of a cartridge is provided. The PIV diagnostic detector comprises a first optical module which includes (i) an LED light source for emitting substantially monochromatic light to illuminate a detection zone associated with at least one detection chamber; (ii) an excitation filter interposed between said light source and said detection zone; (iii) a light detector operable to detect fluorescent light emitted by an excited fluorescent label associated with the sample and to measure an intensity of the fluoresced light; and (iv) an emission filter interposed between said light detector and said detection zone.
Abstract: Embodiments generally relate to a system for reading fluorescent-labelled diagnostic assays for in-vitro diagnostic applications. The system comprises a receiving member adapted to receive a fluorescent-labelled diagnostic assay cartridge carrying a fluorescent-labelled diagnostic assay; at least one excitation module configured to illuminate the diagnostic assay, when the diagnostic assay cartridge is placed in the receiving member; a camera module for capturing an image of the illuminated diagnostic assay placed in the receiving member; a processor for receiving the captured image from the camera module and determining whether or not a target analyte was present in the diagnostic assay captured by the camera module; and memory storing firmware, the firmware including a brightness compensation module configured to adjust the intensity of an image of a diagnostic cartridge captured by the camera module, in order to emulate a uniform field of illumination over the diagnostic cartridge.
Abstract: Embodiments generally relate to a system for reading fluorescent-labelled diagnostic assays for in-vitro diagnostic applications. The system comprises a receiving member adapted to receive a fluorescent-labelled diagnostic assay cartridge carrying a fluorescent-labelled diagnostic assay; at least one excitation module configured to illuminate the diagnostic assay, when the diagnostic assay cartridge is placed in the receiving member; a camera module for capturing an image of the illuminated diagnostic assay placed in the receiving member; a processor for receiving the captured image from the camera module and determining whether or not a target analyte was present in the diagnostic assay captured by the camera module; and memory storing firmware, the firmware including a brightness compensation module configured to adjust the intensity of an image of a diagnostic cartridge captured by the camera module, in order to emulate a uniform field of illumination over the diagnostic cartridge.
Abstract: The present disclosure generally relates to lateral flow immunoassay systems, devices and methods, for detecting analytes in biological samples. More specifically, the present disclosure relates to synthetic thread based lateral flow immunofluorescent assay systems, devices and methods.
Type:
Grant
Filed:
May 7, 2015
Date of Patent:
August 13, 2019
Assignee:
Lumos Diagnostics IP PTY LTD
Inventors:
William Samuel Hunter, Sacha Marie Dopheide, Samantha Irene Couper, Mary Louise Garcia, Joy Ji Liu, Christopher James Hurren