Patents Assigned to Lungpacer Medical Inc.
  • Patent number: 10589097
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: March 17, 2020
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 10561844
    Abstract: Diaphragm pacing systems and methods are disclosed for providing respiratory therapy to a patient. The diaphragm pacing systems can provide rapid insertion and deployment of pacing electrodes in critically ill patients who require intubation and invasive Positive Pressure Mechanical Ventilation (PPMV) in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation. The diaphragm pacing systems can be designed to seamlessly interface with any commercially available positive-pressure ventilatory assistance/support equipment such as is commonly in use in hospital intensive care units (ICU) for treating critically ill patients with breathing insufficiencies, pain, trauma, sepsis or neurological diseases or deficits.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 18, 2020
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 10512772
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 24, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20190336773
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Application
    Filed: July 12, 2019
    Publication date: November 7, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: Joaquin Andres HOFFER, Gautam SADARANGANI, Marc-Andre NOLETTE, Viral S. THAKKAR, Bao Dung TRAN
  • Publication number: 20190321632
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Applicant: Lungpacer Medical, Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Patent number: 10406367
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 10, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 10391314
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 27, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Publication number: 20190232056
    Abstract: This disclosure describes, among other embodiments, a catheter. The catheter may include an outer layer defining a plurality of apertures therethrough, and a body defining at least one longitudinal lumen therein. The body may be within the outer layer, and the apertures may be radially outward of the lumen. The catheter may also include a plurality of electrodes positioned in or on the catheter, with each electrode being electrically exposed through an aperture of the plurality of apertures. A ribbon cable may extend through the lumen and include a plurality of leads, with the plurality of leads being electrically connected to the plurality of electrodes. The plurality of leads and electrodes may be formed by the deposition of conductive inks or paints, or by the electrodeposition of copper or other conductive metals or materials.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: John E. NASH, Douglas G. EVANS, Viral S. THAKKAR
  • Publication number: 20190201690
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: Lungpacer Medical Inc.
    Inventor: Joaquin Andres HOFFER
  • Publication number: 20190175908
    Abstract: This disclosure describes methods and systems for stimulating a respiratory muscle of a patient. The methods herein may include positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; activating the stimulator to cause the respiratory muscle to contract; and ceasing the activation of the stimulator for a period of time. The level and the time of the stimulation may be adjusted for various applications. One or more of the steps in the methods may be repeated. The systems herein may include a stimulator for positioning adjacent a nerve capable of activating the respiratory muscle; a signal generator for providing stimulation energy to the stimulator; a sensor for detecting a response of the respiratory muscle to the stimulation energy; and a controller programmed to control the signal generator for providing stimulation with desired level and time.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: Viral S. THAKKAR, Douglas G. EVANS
  • Patent number: 10293164
    Abstract: A catheter may include an outer layer defining a plurality of apertures therethrough, and a body defining at least one longitudinal lumen therein. The body may be within the outer layer, and the apertures may be radially outward of the lumen. The catheter may also include a plurality of electrodes positioned in or on the catheter, with each electrode being electrically exposed through an aperture of the plurality of apertures. A ribbon cable may extend through the lumen and include a plurality of leads, with the plurality of leads being electrically connected to the plurality of electrodes. The plurality of leads and electrodes may be formed by the deposition of conductive inks or paints, or by the electrodeposition of copper or other conductive metals or materials.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 21, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: John E. Nash, Douglas G. Evans, Viral Thakkar
  • Publication number: 20190038897
    Abstract: A method for positioning an intravascular catheter may include inserting the intravascular catheter into a venous system of a patient, wherein the catheter includes a plurality of electrodes, and multiple electrodes of the plurality of electrodes are configured to emit electrical signals; positioning a distal portion of the catheter in a first position; using one or more electrodes of the plurality of electrodes to acquire an ECG signal; based on the acquired ECG signal, adjusting the distal portion of the catheter to a second position different from the first position; identifying at least one first electrode of the plurality of electrodes to stimulate a first nerve; identifying at least one second electrode of the plurality of electrodes to stimulate a second nerve; and stimulating at least one of the first and second nerves to cause a contraction of a respiratory muscle.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: Viral S. Thakkar, Douglas G. Evans, Matthew J. Gani
  • Publication number: 20190038894
    Abstract: A method may include positioning a catheter, including at least one electrode, within an esophagus such that the electrode is proximate to at least one sympathetic ganglion. The methods may further include recruiting the sympathetic ganglion via an electrical signal, monitoring the recruitment of the sympathetic ganglion, and, based on the monitoring the recruitment of the sympathetic ganglion, adjusting the electrical signal from the at least one electrode.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Applicant: Lungpacer Medical Inc.
    Inventors: Thiago Gasperini Bassi, Joaquin Andres Hoffer, Steven Campbell Reynolds
  • Patent number: 10195429
    Abstract: A method for positioning an intravascular catheter may include inserting the intravascular catheter into a venous system of a patient, wherein the catheter includes a plurality of electrodes, and multiple electrodes of the plurality of electrodes are configured to emit electrical signals; positioning a distal portion of the catheter in a first position; using one or more electrodes of the plurality of electrodes to acquire an ECG signal; based on the acquired ECG signal, adjusting the distal portion of the catheter to a second position different from the first position; identifying at least one first electrode of the plurality of electrodes to stimulate a first nerve; identifying at least one second electrode of the plurality of electrodes to stimulate a second nerve; and stimulating at least one of the first and second nerves to cause a contraction of a respiratory muscle.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: February 5, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Viral S. Thakkar, Douglas G. Evans, Matthew J. Gani
  • Publication number: 20190030333
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 31, 2019
    Applicant: Lungpacer Medical, Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Publication number: 20180369581
    Abstract: A catheter may include electrodes for transvascular nerve stimulation. The electrodes may be positioned within lumens of the catheter and aligned with apertures in the outer wall of the catheter. The electrodes may produce focused electrical fields for stimulation of one or more nerves. In one embodiment, the catheter may include a set of proximal electrodes and a set of distal electrodes, and the proximal electrodes may stimulate a patient's left phrenic nerve and the distal electrodes may stimulate a patient's right phrenic nerve.
    Type: Application
    Filed: June 29, 2018
    Publication date: December 27, 2018
    Applicant: Lungpacer Medical Inc.
    Inventors: Viral S. THAKKAR, Joaquin Andres HOFFER, Bao Dung TRAN, Douglas G. EVANS, John E. NASH
  • Publication number: 20180361148
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 20, 2018
    Applicant: Lungpacer Medical, Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Publication number: 20180361149
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Applicant: Lungpacer Medical, Inc.
    Inventor: Joaquin Andres HOFFER
  • Publication number: 20180339156
    Abstract: A catheter may include an outer layer defining a plurality of apertures therethrough, and a body defining at least one longitudinal lumen therein. The body may be within the outer layer, and the apertures may be radially outward of the lumen. The catheter may also include a plurality of electrodes positioned in or on the catheter, with each electrode being electrically exposed through an aperture of the plurality of apertures. A ribbon cable may extend through the lumen and include a plurality of leads, with the plurality of leads being electrically connected to the plurality of electrodes. The plurality of leads and electrodes may be formed by the deposition of conductive inks or paints, or by the electrodeposition of copper or other conductive metals or materials.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicant: Lungpacer Medical Inc.
    Inventors: John E. NASH, Douglas G. EVANS, Viral THAKKAR
  • Publication number: 20180296835
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic vagus, trigeminal, obturator or other nerves.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 18, 2018
    Applicant: Lungpacer Medical Inc.
    Inventor: Joaquin Andres HOFFER