Abstract: A wet treatment method useful in one of a chemical processing and a rinsing step performed upon fabrication of semiconductor devices. A substrate is treated with a desired liquid while revolving the substrate around an axis of rotation outside the substrate such that the liquid flowing on a surface of the substrate is maintained flowing under a centrifugal force greater than gravitation. The substrate is treated while supplying the liquid at a flow rate at least equal to a discharge rate of the liquid only in a direction conforming with that of the centrifugal force or with that of a flow of the liquid flowing on the surface of the substrate under the centrifugal force. The substrate surface is evenly treated with the liquid while avoiding flows of the liquid running against each other or a flow of the liquid stagnating on the surface of the substrate.
Abstract: A slurry mixing feeder for feeding a slurry to a chemical mechanical polishing machine is disclosed. The slurry contains liquids at a desired mixing ratio. The liquids includes at least a dispersion of fine abrasive particles and a solution of an additive. The slurry mixing feeder comprises: suction ports for sucking the liquids, respectively, a number of said suction ports corresponding to that of the liquids; a discharge port for feeding the slurry to the chemical mechanical polishing machine; feed pumps arranged in feed lines for the respective liquids, said feed lines extending from the individual suction ports to the discharge port, for sucking the individual liquids in specific amounts to give the mixing ratio and delivering the thus-sucked liquids toward the discharge port; and dampers and pressure-regulated restrictors arranged in combination in the feed lines on delivery sides of the feed pumps, respectively. A slurry mixing and feeding method is also disclosed.