Abstract: A brake system slows and/or stops a downhill wheeled board for simulating snowboarding on a snowless terrain. The downhill wheeled board includes a platform having a top and a bottom; at least a first wheel, a second wheel and a third wheel, each wheel having an independent suspension and rotationally mounted to the bottom of the platform for rotation about an axis of rotation; and a brake system. The brake system for the downhill wheeled board includes a control mechanism such as a hand-held trigger, a force splitter such as a Y-plate, a first brake for braking the first wheel and a second brake for braking the second wheel. The force splitter is coupled to the control mechanism for movement by movement of the control mechanism. The first brake is coupled by a first flexible coupling to the force splitter and the second brake is independently coupled to the force splitter. By having a flexible coupling, the independent suspension of the wheels does not affect braking.
Abstract: The present invention provides a turf board for simulating snowboarding on snowless terrain. The turf board includes a platform, two wheel assemblies and two bindings. Each of the wheel assemblies includes tires independently attached to a bottom surface of the platform by a shock absorber suspension. In a preferred embodiment, each of the wheel assemblies include a unique, three-piece rim which maintains the tire. The two bindings are attached to a top surface of the platform for securing a user to the turf board.