Abstract: The present invention relates to a method for producing a suspension of agglomerates of magnetic alkoxysilane-coated metal nanoparticles, wherein an aqueous suspension of magnetic metal nanoparticles is incubated with alkoxysilane, wherein the incubation is carried out essentially in the absence of an organic solvent. The present invention further relates to suspension of agglomerates of magnetic alkoxysilane-coated metal containing nanoparticles obtainable by the method of the present invention and to a composition comprising agglomerates of magnetic alkoxysilane-coated metal nanoparticles, wherein the agglomerates have an average size of 30 to 450 nm, preferably of 50 to 350 nm and especially of 70 to 300 nm as determined by light scattering.
Abstract: The invention relates to a computer-aided simulation tool, in particular to computer-aided simulation methods, for providing assistance in the planning of thermotherapy, and to suitably configured computer equipment. The thermotherapy comprises hyperthermic treatment of a tumor volume within a volume of a human body. The hyperthermic treatment comprises the application of a magnetic field within a treatment volume by means of a magnetic field applicator. In at least one depot volume, thermal energy can be introduced by means of magnetic, paramagnetic and/or superparamagnetic nanoparticles deposited in the body, by power absorption in the applied magnetic field. Field strength values and optionally calculated temperature distributions are provided for assisting the user in the planning of the thermotherapy.
Type:
Grant
Filed:
March 8, 2012
Date of Patent:
February 3, 2015
Assignee:
Magforce AG
Inventors:
Jacek Nadobny, Peng Liu, Jens-Thorsten Ollek, Heike C. Bender
Abstract: Embodiments herein relate to the production of biocompatible magnetic nanoparticles with a high SAR-value which produce a large amount of heat when exposed to an alternating magnetic field. The produced heat can be used among others for therapeutic purposes, in particular for combating cancer.
Abstract: Embodiments herein relate to the production of biocompatible magnetic nanoparticles with a high SAR-value which produce a large amount of heat when exposed to an alternating magnetic field. The produced heat can be used among others for therapeutic purposes, in particular for combating cancer.
Abstract: The invention relates to an alternating magnetic field application device for heating magnetic or magnetizable substances in biological tissue, in particular for thermal therapy using magnetic nanoparticles, composed of a large applicator (1) having a magnetic yoke (2) and two oppositely situated pole shoes (7, 8) on the magnetic yoke (2) which are separated by an exposure gap (13), and having two magnetic coils (9, 10), which are respectively associated with a pole shoe (7, 8), for generating a substantially homogenous alternating magnetic field (12) of a given field strength in the exposure gap (13), wherein the biological tissue to be irradiated may be brought into the exposure gap (13) as an exposure target volume.
Type:
Grant
Filed:
March 6, 2009
Date of Patent:
April 1, 2014
Assignee:
Magforce AG
Inventors:
Peter Feucht, Volker Brüss, Andreas Jordan