Patents Assigned to Magic Leaps, Inc.
  • Patent number: 11983823
    Abstract: Examples of wearable systems and methods can use multiple inputs (e.g., gesture, head pose, eye gaze, voice, totem, and/or environmental factors (e.g., location)) to determine a command that should be executed and objects in the three-dimensional (3D) environment that should be operated on. The wearable system can detect when different inputs converge together, such as when a user seeks to select a virtual object using multiple inputs such as eye gaze, head pose, hand gesture, and totem input. Upon detecting an input convergence, the wearable system can perform a transmodal filtering scheme that leverages the converged inputs to assist in properly interpreting what command the user is providing or what object the user is targeting.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: May 14, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Paul Lacey, Samuel A. Miller, Nicholas Atkinson Kramer, David Charles Lundmark
  • Publication number: 20240151974
    Abstract: An eyewear device for being worn on a head of a user for presenting virtual content to a user comprises an optics system and a frame front operatively coupled to the optics system for presenting virtual content to a user wearing the eyewear device. The eyewear device further comprises left and right opposing temple arms affixed to the frame front, and a torsion band assembly having opposing ends that connect the left and right opposing temple arms together. The eyewear device further comprises at least a first floating boss that protrudes partially into one of the left and right opposing temple arms, such that the first floating boss(es) moves within the one of the left and right opposing temple arms in one or more axes in a constrained manner.
    Type: Application
    Filed: March 11, 2022
    Publication date: May 9, 2024
    Applicant: MAGIC LEAP, INC.
    Inventors: Kyle Michael STUMP, Narendra PERSAUD, Brian James HECKMAN, Jason Donald MARENO
  • Publication number: 20240151975
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a collimation element mounted to a distal end of the optical fiber for collimating light from the optical fiber. The virtual image generation system further comprises a mechanical drive assembly to which the optical fiber is mounted to the drive assembly. The mechanical drive assembly is configured for displacing the distal end of the optical fiber, along with the collimation element, in accordance with a scan pattern. The virtual image generation system further comprises an optical waveguide input apparatus configured for directing the collimated light from the collimation element down the planar waveguide apparatus, such that the planar waveguide apparatus displays image frames to the end user.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 9, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Lionel Ernest Edwin, Ivan Yeoh, Aaron Mark Schuelke, William Hudson Welch, John Graham Macnamara
  • Publication number: 20240153518
    Abstract: A headwear device comprises a frame structure configured for being worn on the head of a user, a vibration voice pickup (VVPU) sensor affixed to the frame structure for capturing vibration originating from a voiced sound of a user and generating a vibration signal, at least one microphone affixed to the frame structure for capturing voiced sound from the user and ambient noise, and at least one processor configured for performing an analysis of the vibration signal, and determining that the user has generated the voice sound based on the analysis of the vibration signal.
    Type: Application
    Filed: March 18, 2022
    Publication date: May 9, 2024
    Applicant: MAGIC LEAP, INC.
    Inventors: Benjamin Thomas VONDERSAAR, Remi Samuel AUDFRAY
  • Publication number: 20240155305
    Abstract: Disclosed herein are systems and methods for efficiently rendering audio. A method may include receiving a request to present a first audio track, wherein the first audio track is based on a first audio model comprising a shared model component and a first model component; receiving a request to present a second audio track, wherein the second audio track is based on a second audio model comprising the shared model component and a second model component; rendering a sound based on the first audio track, the second audio track, the shared model component, the first model component, and the second model component; and presenting, via one or more speakers, the an audio signal comprising the rendered sound.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Remi Samuel AUDFRAY, Mark Brandon HERTENSTEINER, Samuel Charles DICKER, Blaine Ivin WOOD, Michael Z. LAND
  • Patent number: 11977230
    Abstract: A wearable display system includes one or more emissive micro-displays, e.g., micro-LED displays. The micro-displays may be monochrome micro-displays or full-color micro-displays. The micro-displays may include arrays of light emitters. Light collimators may be utilized to narrow the angular emission profile of light emitted by the light emitters. Where a plurality of emissive micro-displays is utilized, the micro-displays may be positioned at different sides of an optical combiner, e.g., an X-cube prism which receives light rays from different micro-displays and outputs the light rays from the same face of the cube. The optical combiner directs the light to projection optics, which outputs the light to an eyepiece that relays the light to a user's eye. The eyepiece may output the light to the user's eye with different amounts of wavefront divergence, to place virtual content on different depth planes.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Evgeni Poliakov, Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Patent number: 11978171
    Abstract: A method is disclosed, the method comprising the steps of identifying a first real object in a mixed reality environment, the mixed reality environment having a user; identifying a second real object in the mixed reality environment; generating, in the mixed reality environment, a first virtual object corresponding to the second real object; identifying, in the mixed reality environment, a collision between the first real object and the first virtual object; determining a first attribute associated with the collision; determining, based on the first attribute, a first audio signal corresponding to the collision; and presenting to the user, via one or more speakers, the first audio signal.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventor: Anastasia Andreyevna Tajik
  • Patent number: 11977236
    Abstract: The present disclosure relates to display systems and, more particularly, to augmented reality display systems. In one aspect, an adaptive lens assembly includes a lens stack configured to exert polarization-dependent optical power to linearly polarized light. The lens stack includes a birefringent lens and an isotropic lens contacting each other to form a conformal interface therebetween. The adaptive lens assembly is configured to be selectively switched between a plurality of states having different optical powers.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: May 7, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Ravi Kumar Komanduri, Chulwoo Oh
  • Patent number: 11978175
    Abstract: A computer implemented method for warping multi-field color virtual content for sequential projection includes obtaining first and second color fields having different first and second colors. The method also includes determining a first time for projection of a warped first color field. The method further includes determining a second time for projection of a warped second color field. Moreover, the method includes predicting a first pose at the first time and predicting a second pose at the second time. In addition, the method includes generating the warped first color field by warping the first color field based on the first pose. The method also includes generating the warped second color field by warping the second color field based on the second pose.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Harold Liebenow, Reza Nourai, Robert Blake Taylor, Fahri Yaras
  • Patent number: 11978159
    Abstract: A cross reality system that provides an immersive user experience by storing persistent spatial information about the physical world that one or multiple user devices can access to determine position within the physical world and that applications can access to specify the position of virtual objects within the physical world. Persistent spatial information enables users to have a shared virtual, as well as physical, experience when interacting with the cross reality system. Further, persistent spatial information may be used in maps of the physical world, enabling one or multiple devices to access and localize into previously stored maps, reducing the need to map a physical space before using the cross reality system in it. Persistent spatial information may be stored as persistent coordinate frames, which may include a transformation relative to a reference orientation and information derived from images in a location corresponding to the persistent coordinate frame.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Anush Mohan, Rafael Domingos Torres, Daniel Olshansky, Samuel A. Miller, Jehangir Tajik, Joel David Holder, Jeremy Dwayne Miranda, Robert Blake Taylor, Ashwin Swaminathan, Lomesh Agarwal, Hiral Honar Barot, Helder Toshiro Suzuki, Ali Shahrokni, Eran Guendelman, Prateek Singhal, Xuan Zhao, Siddharth Choudhary, Nicholas Atkinson Kramer, Kenneth William Tossell, Christian Ivan Robert Moore
  • Patent number: 11977233
    Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may overlap the MPE region and may out couple one or more of the diffracted beams from the optically transmissive substrate as output beams.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
  • Publication number: 20240143068
    Abstract: A high-resolution image sensor suitable for use in an augmented reality (AR) system to provide low latency image analysis with low power consumption. The AR system can be compact, and may be small enough to be packaged within a wearable device such as a set of goggles or mounted on a frame resembling ordinary eyeglasses. The image sensor may receive information about a region of an imaging array associated with a movable object, selectively output imaging information for that region, and synchronously output high-resolution image frames. The region may be updated dynamically as the image sensor and/or the object moves. The image sensor may output the high-resolution image frames less frequently than the region being updated when the image sensor and/or the object moves. Such an image sensor provides a small amount of data from which object information used in rendering an AR scene can be developed.
    Type: Application
    Filed: September 28, 2023
    Publication date: May 2, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Martin Georg Zahnert, Alexander IIic
  • Publication number: 20240146897
    Abstract: An eye tracking system includes a pair of glasses including two frames, a projector coupled to the pair of glasses and operable to project a beam of light, and an eyepiece mounted in one of the two frames and optically coupled to the projector. The eyepiece is operable to direct at least a portion of the beam of light towards an eye of a user. The eye tracking system also includes one or more optical sensors coupled to at least one of the two frames of the pair of glasses and operable to detect a set of reflected signals off the eye of the user, and a processor coupled to the projector and the one or more optical sensors, wherein the processor is operable to determine an eye orientation based on the set of reflected signals.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 2, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Samuel Scott Frank, Charles David Mellvile
  • Patent number: 11971542
    Abstract: Wearable and optical display systems and methods for operation thereof incorporating monovision display techniques are disclosed. A wearable device may include left and right optical stacks configured to switch between displaying virtual content at a first focal plane or a second focal plane. The wearable device may determine whether or not an activation condition is satisfied. In response to determining that the activation condition is satisfied, a monovision display mode associated with the wearable device may be activated, which may include causing the left optical stack to display the virtual content at the first focal plane and causing the right optical stack to display the virtual content at the second focal plane.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Bjorn Nicolaas Servatius Vlaskamp, Jason Allen Shultz, William Hudson Welch, Bing Wu
  • Patent number: 11971549
    Abstract: Very high refractive index (n>2.2) lightguide substrates enable the production of 70° field of view eyepieces with all three color primaries in a single eyepiece layer. Disclosed herein are viewing optics assembly architectures that make use of such eyepieces to reduce size and cost, simplifying manufacturing and assembly, and better-accommodating novel microdisplay designs.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Kevin Richard Curtis, Vikramjit Singh, Kang Luo, Michal Beau Dennison Vaughn, Samarth Bhargava, Shuqiang Yang, Michael Nevin Miller, Frank Y. Xu, Kevin Messer, Robert D. Tekolste
  • Patent number: 11973375
    Abstract: An annular axial flux motor includes a rotor mounted on an annular subsection of a rotatable cam ring and a stator mounted on an annular subsection of a carrier frame. The rotor includes two Halbach arrays of permanent magnets spaced from each other on the cam ring along an axial direction. The stator includes multiple phase electrical windings printed on multiple layers of a printed circuit board (PCB) that are stacked along the axial direction. The multiple layers are positioned between the Halbach arrays, with active side of the Halbach arrays facing to opposite sides of the multiple layers. The Halbach arrays are configured to generate a symmetrical magnetic field and the multiple phase electrical windings are configured to have a same rotor-dependent torque constant, such that the stator can generate a constant torque to rotate the rotor and the cam ring within a finite travel range.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Arno Leon Konings, Charles Robert Schabacker, Jason Donald Mareno
  • Patent number: 11972092
    Abstract: Disclosed is an improved systems and method for navigation and manipulation of browser windows in a 3D mixed reality environment. An improved approach is provided to view a user's windows, regardless of the current location for the user relative to one or more previously-opened windows. A method for displaying windows in a computing environment includes receiving an instruction to select multiple open windows. The method also includes retrieving information for the multiple open windows, where the multiple open windows are associated with different physical locations. The method further includes displaying a representation of the multiple open windows in a single user interface. Moreover, the method includes upon receiving a selection of a selected window of the multiple open windows, loading the selected window into a foreground of a field of view for a user.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Tim Zurmoehle, Andrea Isabel Montoya, Robert John Cummings MacDonald, Sakina Groth, Genevieve Mak
  • Patent number: 11971551
    Abstract: An optical device includes variable optical material that alters at least one of: incident ambient light, spectral content of incident ambient light or direction of incident ambient light through the optical device in response to a stimulus provided by the device. The device can sense intensity and/or spectral characteristics of ambient light and provide appropriate stimulus to various portions of the optical device to activate the variable optical material and alter at least one of: incident ambient light, spectral content of incident ambient light or direction of incident ambient light.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Eric Baerenrodt, Nastasja U. Robaina, Nicole Elizabeth Samec, Christopher M. Harrises, Mark Baerenrodt
  • Publication number: 20240134184
    Abstract: An image display system includes an optical subsystem configured to emit a modulated light beam, and a scanning mirror for generating a reflected light beam that is scanned according to randomly selected or pseudo-randomly selected scan patterns to generate multiple image fields of a multiple interlaced scan image. A plurality of different scan patterns can be cycled through, randomly or pseudo-randomly selected, for the different image fields to reduce artifacts that may be observed while viewing a projected image.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Björn Nicolaas Servatius Vlaskamp, Samuel A. Miller, Aaron M. Clarke
  • Publication number: 20240134191
    Abstract: A wearable device includes a left optical stack having a left eyepiece configured to receive left virtual image light, a left accommodating lens, and a left compensating lens. The wearable device also includes a right optical stack having a right eyepiece configured to receive right virtual image light, a right accommodating lens, and a right compensating lens. An optical power of the left accommodating lens is equal in magnitude to an optical power of the left compensating lens, an optical power of the right accommodating lens is equal in magnitude to an optical power of the right compensating lens, and the optical power of the left accommodating lens and the optical power of the right accommodating lens differ by an offset amount.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Bjorn Nicolaas Servatius Vlaskamp, Jason Allen Shultz, William Hudson Welch, Bing Wu