Patents Assigned to Magic Leaps, Inc.
  • Patent number: 10867314
    Abstract: Head mounted display systems configured to facilitate the exchange of biometric information between the head mounted display system and another computing device are disclosed. The head mounted display system can comprise a virtual or augmented reality device. After displaying a consent request regarding biometric information with the head mounted display system, a response to the consent request that includes a consent indication regarding an aspect of the biometric information can be determined. After obtaining biometric information from a wearer utilizing e.g., a camera of the head mounted display, and processing the biometric information, a biometric information processing result can be generated. The result can be communicated from the head mounted display system to another computing device.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: December 15, 2020
    Assignee: Magic Leap, Inc.
    Inventor: Adrian Kaehler
  • Patent number: 10866421
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 15, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale Tekolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 10867407
    Abstract: Multiple cameras are coupled to a camera rig. Multiple diffractive optical elements (DOEs) are coupled to a DOE prop. Each camera is positioned in an eye box of a DOE and takes an image when the cameras are positioned at a first position, a second position and a third position relative to the DOEs. Three images taken by a each camera at each one of the first position, the second position and third position. The images are transmitted to a processor coupled to the camera rig. For each image, the processor identifies data pairs, each data pair including pixel coordinates of an intensity peak in the image and virtual light source produced by the diffractive optical element that corresponds to the intensity peak, and determines extrinsic parameters of the cameras using the identified data pairs for each image.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 15, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Zhiheng Jia, Etienne Gregoire Grossmann, Hao Zheng
  • Publication number: 20200385308
    Abstract: A method of fabricating a variable diameter fiber includes providing a fiber optic cable comprising a cladding region, a fiber core, and a plurality of sacrificial regions disposed in the cladding region and focusing a laser beam at a series of predetermined locations inside the fiber optic cable. The method also includes creating a series of damage sites associated with the series of predetermined locations, wherein the series of damage sites define a variable diameter profile and a latticework in the cladding region of the fiber optic cable. The method further includes exposing the fiber optic cable to an etchant solution, preferentially etching the series of damage sites, and separating peripheral portions of the fiber optic cable to release the variable diameter fiber.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 10, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, An-Shyang Chu, Timothy Mark Dalrymple, Vaibhav Mathur, Alejandro Lopez, Aaron Mark Schuelke
  • Publication number: 20200387241
    Abstract: The invention relates generally to a user interaction system having a head unit for a user to wear and a totem that the user holds in their hand and determines the location of a virtual object that is seen by the user. A fusion routine generates a fused location of the totem in a world frame based on a combination of an EM wave and a totem IMU data. The fused pose may drift over time due to the sensor's model mismatch. An unfused pose determination modeler routinely establishes an unfused pose of the totem relative to the world frame. A drift is declared when a difference between the fused pose and the unfused pose is more than a predetermined maximum distance.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Applicant: Magic Leap, Inc.
    Inventor: Sheng WAN
  • Patent number: 10863301
    Abstract: A method of presenting an audio signal to a user of a mixed reality environment is disclosed. According to examples of the method, an audio event associated with the mixed reality environment is detected. The audio event is associated with a first audio signal. A location of the user with respect to the mixed reality environment is determined. An acoustic region associated with the location of the user is identified. A first acoustic parameter associated with the first acoustic region is determined. A transfer function is determined using the first acoustic parameter. The transfer function is applied to the first audio signal to produce a second audio signal, which is then presented to the user.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Brian Lloyd Schmidt, Jehangir Tajik, Jean-Marc Jot
  • Patent number: 10861237
    Abstract: A computer implemented method for warping virtual content from two sources includes a first source generating first virtual content based on a first pose. The method also includes a second source generating second virtual content based on a second pose. The method further includes a compositor processing the first and second virtual content in a single pass. Processing the first and second virtual content includes generating warped first virtual content by warping the first virtual content based on a third pose, generating warped second virtual content by warping the second virtual content based on the third pose, and generating output content by compositing the warped first and second virtual content.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Reza Nourai, Robert Blake Taylor
  • Patent number: 10861242
    Abstract: Examples of wearable systems and methods can use multiple inputs (e.g., gesture, head pose, eye gaze, voice, totem, and/or environmental factors (e.g., location)) to determine a command that should be executed and objects in the three-dimensional (3D) environment that should be operated on. The wearable system can detect when different inputs converge together, such as when a user seeks to select a virtual object using multiple inputs such as eye gaze, head pose, hand gesture, and totem input. Upon detecting an input convergence, the wearable system can perform a transmodal filtering scheme that leverages the converged inputs to assist in properly interpreting what command the user is providing or what object the user is targeting.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Paul Lacey, Samuel A. Miller, Nicholas Atkinson Kramer, David Charles Lundmark
  • Patent number: 10860090
    Abstract: Techniques are disclosed for performing localization of a handheld device with respect to a wearable device. At least one sensor mounted to the handheld device, such as an inertial measurement unit (IMU), may obtain handheld data indicative of movement of the handheld device with respect to the world. An imaging device mounted to either the handheld device or the wearable device may capture a fiducial image containing a number of fiducials affixed to the other device. The number of fiducials contained in the image are determined. Based on the number of fiducials, at least one of a position and an orientation of the handheld device with respect to the wearable device are updated based on the image and the handheld data in accordance with a first operating state, a second operating state, or a third operating state.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Zachary C. Nienstedt, Samuel A. Miller, Barak Freedman, Lionel Ernest Edwin, Eric C. Browy, William Hudson Welch, Ron Liraz Lidji
  • Patent number: 10861244
    Abstract: Disclosed is an improved approach for generated recordings from augmented reality systems from the perspective of a camera within the system. Instead of re-using rendered virtual content from the perspective of the user's eyes for AR recordings, additional virtual content is rendered from an additional perspective specifically for the AR recording. That additional virtual content is combined with image frames generated by a camera to form the AR recording.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 8, 2020
    Assignee: MAGIC LEAP, INC.
    Inventors: Reza Nourai, Michael Harold Liebenow, Robert Blake Taylor, Robert Wyatt
  • Patent number: 10863300
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reflection of the input audio signal in a surface of the virtual environment.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Jean-Marc Jot, Samuel Charles Dicker, Brian Lloyd Schmidt, Remi Samuel Audfray
  • Patent number: 10859812
    Abstract: An augmented reality (AR) device is described with a display system configured to adjust an apparent distance between a user of the AR device and virtual content presented by the AR device. The AR device includes a first tunable lens that change shape in order to affect the position of the virtual content. Distortion of real-world content on account of the changes made to the first tunable lens is prevented by a second tunable lens that changes shape to stay substantially complementary to the optical configuration of the first tunable lens. In this way, the virtual content can be positioned at almost any distance relative to the user without degrading the view of the outside world or adding extensive bulk to the AR device. The augmented reality device can also include tunable lenses for expanding a field of view of the augmented reality device.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Brian T. Schowengerdt, Michael Anthony Klug, Jahja I. Trisnadi
  • Patent number: 10859676
    Abstract: A time of flight based depth detection system is disclosed that includes a projector configured to sequentially emit multiple complementary illumination patterns. A sensor of the depth detection system is configured to capture the light from the illumination patterns reflecting off objects within the sensor's field of view. The data captured by the sensor can be used to filter out erroneous readings caused by light reflecting off multiple surfaces prior to returning to the sensor.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: David Cohen, Assaf Pellman, Robert D. TeKolste, Shlomo Felzenshtein, Giora Yahav
  • Patent number: 10862930
    Abstract: One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventor: Samuel A. Miller
  • Patent number: 10860070
    Abstract: In various embodiments, a wearable component configured to be worn on a head of a user is disclosed. The wearable component can comprise a wearable support and an electronic component coupled to or disposed within the wearable support. A thermal management structure can be provided in thermal communication with the electronic component. The thermal management structure can be configured to transfer heat from the electronic component away from the head of the user when the wearable support is disposed on the head of the user.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Michael Janusz Woods, Paul M. Greco
  • Patent number: 10861130
    Abstract: A computer implemented method for warping virtual content includes generating warped virtual content by transforming source virtual content. The method also includes determining whether a memory location corresponding to an X, Y location of the warped virtual content in an output frame of reference is occupied by pre-existing virtual content. The method further includes storing the warped virtual content in the memory location if the memory location is not occupied. Moreover, the method includes comparing respective Z locations of the warped virtual content and the pre-existing virtual content to identify virtual content with a Z location closer to a viewing location if the memory location is occupied. The method also includes storing the warped virtual content in the memory location corresponding to the X, Y location if a Z location of warped virtual content is closer to the viewing location than a pre-existing Z location of pre-existing virtual content.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Reza Nourai, Robert Blake Taylor
  • Patent number: 10852547
    Abstract: An eyepiece waveguide for an augmented reality display system may include an optically transmissive substrate, an input coupling grating (ICG) region, a multi-directional pupil expander (MPE) region, and an exit pupil expander (EPE) region. The ICG region may receive an input beam of light and couple the input beam into the substrate as a guided beam. The MPE region may include a plurality of diffractive features which exhibit periodicity along at least a first axis of periodicity and a second axis of periodicity. The MPE region may be positioned to receive the guided beam from the ICG region and to diffract it in a plurality of directions to create a plurality of diffracted beams. The EPE region may be positioned to receive one or more of the diffracted beams from the MPE region and to out couple them from the optically transmissive substrate as output beams.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 1, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Samarth Bhargava, Victor Kai Liu, Kevin Messer
  • Patent number: 10856095
    Abstract: A dual source spatialized audio system includes a general audio system and a personal audio system. The general system includes a general audio processor and general speakers to produce general sound. The personal system includes a frame to be worn on a head of a user and a plurality of personal speakers attached to the frame. The personal system also includes a head pose sensor to collect head pose data of the user. The personal system further includes a head pose processor to determine a head pose of the user from the head pose data. Moreover, the personal system includes a personal audio processor to generate personal audio data based on the head pose of the user. The personal speakers generate personal sound corresponding to the personal audio data. The personal processor receives timing information/metadata from the general audio processor to synchronize the personal sound with the general sound.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: December 1, 2020
    Assignee: Magic Leap, Inc.
    Inventors: David Thomas Roach, Samuel A. Miller, George Alistair Sanger, Brian Schmidt, Terry Micheal O'Gara, Anastasia Andreyevna Tajik, Jehangir Tajik
  • Patent number: 10854165
    Abstract: A method for calibrating a device having a first sensor and a second sensor. The method includes capturing sensor data using the first sensor and the second sensor. The device maintains a calibration profile including a translation parameter and a rotation parameter to model a spatial relationship between the first sensor and the second sensor. The method also includes determining a calibration level associated with the calibration profile at a first time. The method further includes determining, based on the calibration level, to perform a calibration process. The method further includes performing the calibration process at the first time by generating one or both of a calibrated translation parameter and a calibrated rotation parameter and replacing one or both of the translation parameter and the rotation parameter with one or both of the calibrated translation parameter and the calibrated rotation parameter.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 1, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Yu-Tseh Chi, Jean-Yves Bouguet, Divya Sharma, Lei Huang, Dennis William Strelow, Etienne Gregoire Grossmann, Evan Gregory Levine, Adam Harmat, Ashwin Swaminathan
  • Patent number: 10852838
    Abstract: Configurations are disclosed for presenting virtual reality and augmented reality experiences to users. The system may comprise an image capturing device to capture one or more images, the one or more images corresponding to a field of the view of a user of a head-mounted augmented reality device, and a processor communicatively coupled to the image capturing device to extract a set of map points from the set of images, to identify a set of sparse points and a set of dense points from the extracted set of map points, and to perform a normalization on the set of map points.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 1, 2020
    Assignee: MAGIC LEAP, INC.
    Inventors: Gary R. Bradski, Samuel A. Miller, Rony Abovitz