Patents Assigned to MagnaCom Ltd.
  • Patent number: 8665992
    Abstract: A transmitter may be operable to generate a sequence of symbols which may comprise information symbols and one or more pilot symbols. The transmitter may transmit the information symbols at a first power and transmit the one or more pilot symbols at a second power. In instances when a particular performance indicator is below a determined threshold, the first power may be set to a first value and the second power may be set to zero value. In instances when the particular performance indicator is above the determined threshold, the first power may be set to a second value and the second power may be set to a non-zero value. A value of the first power and a value of the second power may be based on an applicable average power limit determined by a communications standard with which the transmitter is to comply.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 4, 2014
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8665941
    Abstract: One or more embodiments describe a decision feedback equalizer for highly spectrally efficient communications. A method may be performed in a decision feedback equalizer (DFE). The method may include initializing values of tap coefficients of the DFE based on values of tap coefficients of a partial response filter through which said transmitted symbols passed en route to said sequence estimation circuit. The method may include receiving estimates of transmitted symbols from a sequence estimation circuit, and receiving an error signal that is generated based on an estimated partial response signal output by the sequence estimation circuit. The method may include updating values of tap coefficients of the DFE based on the error signal and the estimates of transmitted symbols. The method may include generating one or more constraints that restrict the impact of the error signal on the updating of the values of the tap coefficients of the DFE.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 4, 2014
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20140036986
    Abstract: Methods and systems are provided for coarse phase estimation for highly-spectrally efficient communications. An example method may include, equalizing, in a receiver, a received inter-symbol correlated (ISC) signal to generate an equalized ISC signal. A phase adjustment signal may be generated based on an ISC feedback signal. The ISC feedback signal may be generated using a sequence estimation process and a non-linearity model. A phase of the equalized ISC signal may be adjusted using the generated phase adjustment signal, to generate a phase adjusted partial response signal. The phase adjustment signal may be generated based on a phase difference between the equalized ISC signal and the partial response feedback signal.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20140003483
    Abstract: A receiver may be operable to receive a QAM-based, inter-symbol correlated (ISC) signal having pilot overhead of 5% at a signal-to-noise ratio (SNR). The receiver may be operable to process the QAM-based, ISC signal to output information at a particular rate with a symbol error rate lower than or equal to 1e?2. The first SNR may be at least 3 dB below a SNR required to achieve the same particular information rate and the same symbol error rate while processing a signal having zero inter-symbol interference.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Applicant: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20130343476
    Abstract: A method and system for a sequence estimation in a receiver, such as for use when receiving a sample of a received inter-symbol correlated (ISC) signal corresponding to a transmitted vector of L symbols, with L being a integer greater than 1, and with symbol L being a most-recent symbol and symbol 1 being least recent symbol of the vector. A plurality of candidate vectors may be generated, wherein element L-m of each candidate vector holding one of a plurality of possible values of the symbol L-m, with m is an integer greater than or equal to 1, and elements L-m+1 through L of each candidate vectors holding determined filler values. A plurality of metrics may be generated based on the plurality of candidate vectors, and based on the generated plurality of metrics, a best one of the possible values of the symbol L-m may be selected.
    Type: Application
    Filed: January 31, 2013
    Publication date: December 26, 2013
    Applicant: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20130343487
    Abstract: A receiver may be dynamically configurable, during run-time, into a plurality of modes of operation. In a first mode of operation the receiver may demodulate received signals having relative low inter-symbol correlation using a near zero ISI filter and symbol slicing. In a second mode of operation the receiver may demodulate received signals having relatively high inter-symbol correlation using an input filter configured to achieve a desired total partial response and a sequence estimation algorithm.
    Type: Application
    Filed: January 31, 2013
    Publication date: December 26, 2013
    Applicant: MAGNACOM LTD.
    Inventor: Amir Eliaz
  • Publication number: 20130343485
    Abstract: A transmitter may comprise a symbol mapping circuit that is configurable to operate in at least two configurations, wherein a first of the configurations of the symbol mapping circuit uses a first symbol constellation and a second of the configurations of the symbol mapping circuit uses a second symbol constellation. The transmitter may also comprise a pulse shaping circuit that is configurable to operate in at least two configurations, wherein a first of the configurations of the pulse shaping circuit uses a first set of filter taps and a second of the configurations of the pulse shaping circuit uses a second set of filter taps. The first set of filter taps may correspond to a root raised cosine (RRC) filter and the second set of filter taps corresponds to a partial response filter.
    Type: Application
    Filed: January 31, 2013
    Publication date: December 26, 2013
    Applicant: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8605832
    Abstract: A method and system for a sequence estimation in a receiver, such as for use when receiving a sample of a received inter-symbol correlated (ISC) signal corresponding to a transmitted vector of L symbols, with L being a integer greater than 1, and with symbol L being a most-recent symbol and symbol 1 being least recent symbol of the vector. A plurality of candidate vectors may be generated, wherein element L-m of each candidate vector holding one of a plurality of possible values of the symbol L-m, with m is an integer greater than or equal to 1, and elements L-m+1 through L of each candidate vectors holding determined filler values. A plurality of metrics may be generated based on the plurality of candidate vectors, and based on the generated plurality of metrics, a best one of the possible values of the symbol L-m may be selected.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 10, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8599914
    Abstract: A receiver may be operable to receive a signal. A sequence estimation module of the receiver may generate estimated symbols corresponding to the received signal. The generating of the estimated symbols may use tap information associated with one or both of a pulse shaper via which the signal was transmitted and an input filter of the receiver. The sequence estimation module may generate a reconstructed signal based on the estimated symbols and the tap information. A feed forward equalizer (FFE) of the receiver may adapt a plurality of tap coefficients of the FFE based on the reconstructed signal. The signal may be equalized via the FFE. The adaptation of the tap coefficients of the FFE may be based on a least-mean-square (LMS) process for minimizing a mean square of the error signal. An output signal of the FFE may comprise a power gain compensation.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 3, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8582637
    Abstract: A system may comprise circuitry that includes a sequence estimation circuit and a non-linearity modeling circuit. The circuitry may be operable to receive a single-carrier signal that was generated by passage of symbols through a partial response filter and through a non-linear circuit. The circuitry may be operable to generate estimated values of the symbols using the sequence estimation circuit and using the non-linearity modeling circuit. An output of the non-linearity modeling circuit may be equal to a corresponding input of the non-linearity modeling circuit modified according to a non-linear model that approximates the non-linearity of the non-linear circuit through which the received signal passed.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 12, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8571131
    Abstract: A method and system for dynamic configuring of one or both of a transmitter pulse-shaping filter and a receiver pulse-shaping filter to generate a total partial response that incorporates a predetermined amount of inter-symbol interference (ISI). The predetermined amount of ISI is determined based on an estimation process during extraction of data from an output of the receiver pulse-shaping filter, such that performance of total partial-response-based communication matches or surpasses performance of communication incorporating filtering based on no or near-zero ISI. The reconfiguring may comprise obtaining data relating to changes affecting one or more of: the pulse-shaping filtering, and a channel and/or an interface used in the communication of data based on the total partial response, and adjusting the filter configuration, such as by determining a new optimized filtering configuration or changes to existing configurations (e.g., by applying a filtering optimization process).
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 29, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8571146
    Abstract: For corrupt symbol handling for providing high reliability sequences, an inter-symbol correlated (ISC) signal is received. During sequence estimation when demodulating the received ISC signal, partial response samples in the ISC may be processed utilizing an erasure mechanism. The partial response samples are spread (e.g. interleaved) over time during modulation by a modulator. A determination is made as to whether to utilize self erasure or external erasure to process the spread partial response samples. The determination may be based on whether or not events of low SNR for corresponding ones of the partial response samples are identified. The external erasure may be utilized for processing the corresponding ones of the partial response samples when the events of low SNR are identified and the self erasure is utilized when the events of low SNR are not identifiable. Erasure results maybe fed back to the modulator.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 29, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8572458
    Abstract: A transmitter inserts parity samples into a stream of information symbols in an inter-symbol correlated (ISC) signal. The inserted parity samples may be utilized to generate estimates of corresponding information symbols when they are received by a receiver. The information symbols may be pulse shaped by a first pulse shaping filter characterized by a first response. The parity samples may be pulsed shaped by a second pulse shaping filter characterized by a second response. The first response and the second response are diverse or uncorrelated. The transmitter may transmit the ISC signal comprising the pulse shaped information symbols and the pulse shaped parity samples. The parity samples may be generated utilizing a non-linear function over a plurality of the information symbols. The non-linear function may be diverse from a partial response signal convolution corresponding to the information symbols and is designed according to a desired SNR value at the receiver.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 29, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8566687
    Abstract: A receiver receives an inter-symbol correlated (ISC) signal with information symbols and a corresponding parity symbol. Values of information symbols are estimated utilizing parity samples that are generated from the parity symbols. One or more maximum likelihood (ML) decoding metrics are generated for the information symbols. One or more estimations are generated for the information symbols based on the one or more ML decoding metrics. A parity metric is generated for each of the one or more generated estimations of the information symbols. The parity metric is generated by summing a plurality of values of one of the generated estimations to generate a sum, and wrapping the sum to obtain a parity check value that is within the boundaries of a symbol constellation utilized in generating the information symbols.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 22, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8565363
    Abstract: A receiver may process a received signal to generate a processed received signal. The receiver may generate, during a sequence estimation process, an estimate of a phase error of the processed received signal. The receiver may generate an estimate of a value of a transmitted symbol corresponding to the received signal based on the estimated phase error. The generation of the estimate of the phase error may comprise generation of one or more phase candidate vectors. The generation of the estimate may comprise calculation of a metric based on the one or more phase candidate vectors. The calculation of the metric may comprise phase shifting the processed received signal based on the estimated phase error resulting in a phase-corrected received signal. The calculation of the metric may comprise calculating a Euclidean distance based on the phase-corrected received signal and one or more symbol candidate vectors.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 22, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8559496
    Abstract: A receiver may receive a signal that was generated by passage of symbols through a non-linear circuit. An equalizer of the receiver may equalize the received signal based on a first non-linearity compensated, inter-symbol correlated (ISC) feedback signal to generate an equalized signal. The receiver may correct a phase error of the equalized signal to generate a phase-corrected equalized signal. The phase correction may be based on a second, non-linearity compensated, inter-symbol correlated (ISC) feedback signal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8559498
    Abstract: One or more embodiments describe a decision feedback equalizer utilizing symbol error rate biased adaptation function for highly spectrally efficient communications. A method may be performed in a decision feedback equalizer (DFE). The method may include determining values of tap coefficients used by the DFE based. The tap coefficients may be determined based on an error signal that is based on an estimated inter-symbol-correlated (ISC) signal. The tap coefficients may be determined based on a set of error vector(s), where each error vector in the set represents a difference between estimated symbols generated in the receiver and expected symbols. Determining the values of the tap coefficients may include using a symbol error rate function that estimates the actual symbol error rate in the receiver, wherein the symbol error rate function receives as input the set of error vector(s).
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8559494
    Abstract: Methods and systems are provided for timing synchronization for reception of highly-spectrally efficient communications. An example method may include, filtering, in a receiver, a received inter-symbol correlated (ISC) signal to generate a filtered ISC signal. The method may further include locking to a timing pilot signal of the filtered ISC signal. The timing pilot signal may include a sub-harmonic frequency of a clock signal associated with the received ISC signal. A timing pilot estimate signal of the timing pilot signal may be generated. The timing pilot estimate signal may be cancelled from the filtered partial response signal to generate an output ISC signal. The timing pilot signal includes a signal at ±(1/n*Fbaud), where n is an integer greater than 2, and Fbaud is a symbol rate of the clock signal. The clock signal may be recovered from the filtered ISC signal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8553821
    Abstract: A receiver may be operable to generate estimates of transmitted symbols using a sequence estimation process that may incorporate a non-linear model. The non-linear model may be adapted by the receiver based on particular communication information that may be indicative of non-linearity experienced by the transmitted symbols. The receiver may generate a reconstructed signal from the estimates of the transmitted symbols. The receiver may adapt the non-linear model based on values of an error signal generated from the reconstructed signal, and the values of the error signal may be generated from a portion of the generated estimates that may correspond to known symbols and/or information symbols. The values of the error signal corresponding to the known symbols may be given more weight in an adaptation algorithm, and the values of the error signal corresponding to the information symbols may be given less weight in the adaptation algorithm.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 8, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8548097
    Abstract: Methods and systems are provided for coarse phase estimation for highly-spectrally efficient communications. An example method may include, equalizing, in a receiver, a received inter-symbol correlated (ISC) signal to generate an equalized ISC signal. A phase adjustment signal may be generated based on an ISC feedback signal. The ISC feedback signal may be generated using a sequence estimation process and a non-linearity function. A phase of the equalized ISC signal may be adjusted using the generated phase adjustment signal, to generate a phase adjusted partial response signal. The phase adjustment signal may be generated based on a phase difference between the equalized ISC signal and the partial response feedback signal. At least one ISC vector may be generated by buffering samples of the phase adjusted ISC signal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 1, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz