Patents Assigned to MARKFORGED, INC.
  • Patent number: 10377083
    Abstract: A method comprising forming a shrinking platform of layers of a composite, the composite including a metal particulate filler in a first matrix, forming a shrinking support of layers of the composite upon the shrinking platform, forming a first release layer of a release material upon the shrinking support, the release material including a ceramic particulate and a second matrix, and forming a part of the composite upon the shrinking support to form a portable assembly from the combined shrinking platform, shrinking support, release layer and part, wherein substantially horizontal portions of the part are vertically supported by the shrinking platform, wherein the first release layer is configured, after sintering, to separate the part from the shrinking support and to allow the part to be readily removed from the shrinking support, and wherein the shrinking support is configured to prevent the part from distorting during sintering.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 13, 2019
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10315247
    Abstract: In molten metal jetting, where droplets of metal are jetted to 3D print a part, each layer may be traversed each successive layer with a normalizing grinding wheel or other leveling device such as a layer to level each successive layer, and/or the melt reservoir or printing chamber may be filled with an anoxic gas mix to prevent oxidation.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 11, 2019
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10259160
    Abstract: A three dimensional printer which prints at using at least one composite material having an inherently abrasive filler or fiber material has a Mohs hardness greater than substantially 1, or a Knoop/Vickers hardness greater than substantially 300 kg/mm2, or a Rockwell C hardness at least C30, and where a nozzle tip may contact a top surface of a previously deposited line of material may have a nozzle body includes a material having a thermal conductivity at least 35 w/M-K to conduct heat to the nozzle, and a nozzle throat and/or nozzle tip each include a material having a Rockwell C hardness at least C40, to resist wear from sliding contact of the nozzle tip with the previously deposited lines of the material being printed or another previously deposited material, or from the material being printed as it is printed through the nozzle throat.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: April 16, 2019
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10226103
    Abstract: A footwear insole shape is generated by supplying a core reinforced filament having a matrix material impregnating reinforcing strands aligned along the filament, as well as a fill material separately from the core reinforced filament and depositing at least one shell of fill material within an insole shape upon a print bed. The core reinforced filament is deposited to fuse to the fill material within a first reinforcing region formed with respect to the insole shape. A cutter upstream of the nozzle tip cuts the core reinforced filament, and a remainder of the core reinforced filament is deposited to complete the first reinforcing region. A nozzle tip applies pressure to continuously compact the core reinforced filament toward the insole shape as the core reinforced filament is fused to the fill material.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: March 12, 2019
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10099427
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to drag the filament from the conduit nozzle.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 16, 2018
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 10076875
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to drag the filament from the conduit nozzle.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: September 18, 2018
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 10076876
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an extrusion nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to extruding the filament from the extrusion nozzle.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 18, 2018
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 10052815
    Abstract: A method comprising depositing a part from layers of model material including sinterable metal particles and a first binder, the part surrounding a hole, depositing a first support structure from layers of the model material within the hole, depositing a first release layer of a release material above the first support structure and within the hole, the release material including a dispersed ceramic powder and a second binder, depositing a second release layer of a release material below the first support structure and within the hole, and forming a multipiece assembly of the part, the first and second release layers, and the first support structure, wherein, during sintering, the part and first support structure are configured to densify as a whole at a uniform rate, the release material is configured to reduce to a loose ceramic powder, and the first support structure is configured to prevent distortion of the hole.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: August 21, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10040242
    Abstract: A method comprising depositing, in layers, a shrinking platform formed from a composite including metal particles embedded in a first matrix, depositing shrinking supports of the composite upon the shrinking platform, forming a separation clearance dividing at least one shrinking support into fragments, depositing, from the composite, a part upon the shrinking platform and shrinking supports, depositing a separation material intervening between the part and the shrinking supports, the separation material including a ceramic powder and a second matrix, and forming, from the shrinking platform, shrinking supports, separation material, and part, a portable platform assembly in a green state, wherein the shrinking support is configured to prevent the portable platform assembly from distorting from gravitational force during sintering of the metal particles of the assembly in a brown state, and wherein the ceramic powder of the separation material is configured to separate the shrinking support from the part follo
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: August 7, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10040241
    Abstract: A method comprising forming a shrinking platform of layers of a composite, the composite including a metal particulate filler in a first matrix, forming a shrinking support of layers of the composite upon the shrinking platform, forming a first release layer of a release material upon the shrinking support, the release material including a ceramic particulate and a second matrix, and forming a part of the composite upon the shrinking support to form a portable assembly from the combined shrinking platform, shrinking support, release layer and part, wherein substantially horizontal portions of the part are vertically supported by the shrinking platform, wherein the first release layer is configured, after sintering, to separate the part from the shrinking support and to allow the part to be readily removed from the shrinking support, and wherein the shrinking support is configured to prevent the part from distorting during sintering.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: August 7, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10040252
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an extrusion nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to extruding the filament from the extrusion nozzle.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: August 7, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10035298
    Abstract: According to one aspect, embodiments herein provide a method comprising forming a shrinking platform of model material above a build plate, the model material including sinterable metal particles and a first binder, forming a support structure of the model material extending up from the shrinking platform, forming a first portion of the part from successive layers of the model material above the support structure, forming a release layer intervening between a surface of the part and an opposing surface of the support structure or between a surface of the shrinking platform and an opposing surface of the build plate, the release layer including a dispersed ceramic powder and a second binder, and supporting the part, the release layer, and the support structure upon the shrinking platform to form a platform-integrating part assembly, the support structure being configured to prevent the first portion from distorting from gravitational force during sintering.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 31, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10016942
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to drag the filament from the conduit nozzle.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 10, 2018
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 10000011
    Abstract: To reduce distortion in an additively manufactured part, a shrinking platform is formed from a metal particulate filler in a debindable matrix. Shrinking supports of the same material are formed above the shrinking platform, and a desired part of the same material is formed upon them. A sliding release layer is provided below the shrinking platform of equal or larger surface area than a bottom of the shrinking platform to lateral resistance between the shrinking platform and an underlying surface. The matrix is debound sufficient to form a shape-retaining brown part assembly including the shrinking platform, shrinking supports, and the desired part. The shape-retaining brown part assembly is heated to shrink all of the components together at a same rate via atomic diffusion.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: June 19, 2018
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 9956725
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to applying the filament from the conduit nozzle.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 1, 2018
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 9815268
    Abstract: In a 3D composite printer, toolpaths defining fill material shells are received, as are toolpaths defining support material shells. A 3D toolpath defining a long fiber composite material curved shell is also received. A fill material deposition head traces the toolpaths to deposit some of the fill material shells or support material shells at least in part non-parallel to a printing substrate. A long fiber deposition head traces the 3D toolpath at least in part non-parallel to the printing substrate to deposit the long fiber composite material curved, concave, ring, tube, or winding shells to enclose, surround, or envelop at least a portion of the fill or support material shells.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: November 14, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Rick Bryan Woodruff, Abraham Lawrence Parangi, David Steven Benhaim, Benjamin Tsu Sklaroff
  • Patent number: 9694544
    Abstract: A three-dimensional geometry is received, and sliced into layers. A first anisotropic fill tool path for controlling a three dimensional printer to deposit a substantially anisotropic fill material is generated defining at least part of an interior of a first layer. A second anisotropic fill tool path for controlling a three dimensional printer to deposit the substantially anisotropic fill material defines at least part of an interior of a second layer. A generated isotropic fill material tool path defines at least part of a perimeter and at least part of an interior of a third layer intervening between the first and second layers.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: July 4, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, David Benhaim, Abraham Parangi, Benjamin Sklaroff
  • Patent number: 9688028
    Abstract: A three-dimensional geometry is received, and sliced into layers. A first anisotropic fill tool path for controlling a three dimensional printer to deposit a substantially anisotropic fill material is generated defining at least part of an interior of a first layer. A second anisotropic fill tool path for controlling a three dimensional printer to deposit the substantially anisotropic fill material defines at least part of an interior of a second layer. A generated isotropic fill material tool path defines at least part of a perimeter and at least part of an interior of a third layer intervening between the first and second layers.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 27, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Rick Bryan Woodruff, David Steven Benhaim, Abraham Lawrence Parangi, Benjamin Tsu Sklaroff
  • Patent number: 9579851
    Abstract: Various embodiments related to three dimensional printers, and reinforced filaments, and their methods of use are described. In one embodiment, a void free reinforced filament is fed into an conduit nozzle. The reinforced filament includes a core, which may be continuous or semi-continuous, and a matrix material surrounding the core. The reinforced filament is heated to a temperature greater than a melting temperature of the matrix material and less than a melting temperature of the core prior to applying the filament from the conduit nozzle.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 28, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Gregory Thomas Mark, Antoni S. Gozdz
  • Patent number: 9539762
    Abstract: A three dimensional printer incorporates a kinematic coupling between the build platform and movable stage which holds the build platform, of three curved protrusions attached to one of the build platform or the movable stage and six locating features formed in receivers of the other. At least two flexures differentially change a Z position of each of two of the curved protrusions. 3D printing is paused at a preset level of completion, and the build platform may be removed for external operations. A print resume circuit resumes printing of additional printed layers at the previous position in response to a return detection circuit that responds to an input (e.g., a touch screen confirmation).
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: January 10, 2017
    Assignee: MARKFORGED, INC.
    Inventors: Keith Durand, Rick Bryan Woodruff, Gregory Thomas Mark