Abstract: A vibration damping liner for insertion in the bore of a cylindrical shaft has a cylindrical core the exterior of which is corrugated and defined by alternating grooves and upstanding flutes. The liner has an undeformed flute diameter greater than that of the bore. All of the flutes are deformed prior to insertion of the liner into the cylindrical shaft laterally of their length and in the same direction to produce a liner having a deformed flute diameter less than the undeformed flute diameter, but still greater than the diameter of the bore. As the liner is inserted in the bore, the deformed flutes may deform further radially inwardly, but once the liner is in the shaft the flutes expand into engagement with the surface of the bore. The flutes have thereon a coating of material having a coefficient of friction greater than that of the flute-forming material.
Abstract: A vibration damping liner adapted to pass through a relatively small diameter end of a tubular shaft for accommodation in a relatively large diameter section of such shaft, the liner being formed of a plurality of coaxial, helically wound paperboard strips forming inner and outer layers. The confronting edges of adjacent convolutions of each layer are coplanar and unjoined, and the confronting edges of the convolutions of all but one of such layers register with one another. The paperboard strip forming the one layer bridges the confronting edges of the adjacent convolutions of the other layers and is adhesively secured to that layer adjacent such one layer. Such one layer has less resistance to rupture than any of the other layers.
Type:
Grant
Filed:
January 7, 1997
Date of Patent:
February 9, 1999
Assignee:
Martin H. Stark
Inventors:
Martin H. Stark, Donald W. Brewster, Gary A. Conger, Donald S. Agnew