Abstract: A system for magnetic detection, includes a magneto-optical defect center material comprising a plurality of magneto-optical defect centers, a radio frequency (RF) excitation source, an optical detector and an optical light source. The RF excitation source is configured to provide RF excitation to the material. The optical detector is configured to receive an optical signal emitted by the material. The optical light source is configured to provide optical light to the material, and includes a readout optical light source and a reset optical light source. The readout optical light source is configured to illuminate light in a first illumination volume of the material. The reset optical light source is configured to illuminate light in a second illumination volume of the material, the second illumination volume being larger than and encompassing the first illumination volume. The reset optical light source provides a higher power light than the readout optical light source.
Type:
Application
Filed:
December 15, 2016
Publication date:
November 30, 2017
Applicant:
Lockheed Martin Corporation
Inventors:
Arul Manickam, Peter G. Kaup, Gregory Scott Bruce, Wilbur Lew
Abstract: A system provides light received from NV diamond material to an optical collector. The provision of light received from NV diamond material to an optical collector impacts the efficiency by which light is directed to the optical collector. The system may be employed to efficiently direct light from the NV diamond material to the optical collector.
Type:
Application
Filed:
March 9, 2017
Publication date:
November 30, 2017
Applicant:
Lockheed Martin Corporation
Inventors:
Gregory Scott Bruce, Joseph W. Hahn, Nicholas Mauriello Luzod
Abstract: A magneto-optical defect center magnetometer, such as a diamond nitrogen vacancy (DNV) magnetometer, can include an excitation source, a magneto-optical defect center element, a collection device, a top plate, a bottom plate, and a printed circuit board.
Type:
Application
Filed:
March 13, 2017
Publication date:
November 30, 2017
Applicant:
Lockheed Martin Corporation
Inventors:
Joseph W. HAHN, Arul MANICKAM, Peter G. KAUP, Gregory Scott BRUCE, Wilbur LEW, Nicholas M. LUZOD, Duc HUYNH
Abstract: Systems and methods using a magneto-optical defect center material magnetic sensor system that uses fluorescence intensity to distinguish the ms=±1 states, and to measure the magnetic field based on the energy difference between the ms=+1 state and the ms=?1 state, as manifested by the RF frequencies corresponding to each state in some embodiments. The system may include an optical excitation source, which directs optical excitation to the material. The system may further include an RF excitation source, which provides RF radiation to the material. Light from the material may be directed through a light pipe to an optical detector. Light from the material may be directed through an optical filter to an optical detector.
Type:
Application
Filed:
February 23, 2017
Publication date:
November 30, 2017
Applicant:
Lockheed Martin Corporation
Inventors:
Joseph W. Hahn, Wilbur Lew, Nick Luzod, Gregory Scott Bruce
Abstract: A system for magnetic detection includes a magneto-optical defect center material including at least one magneto-optical defect center that emits an optical signal when excited by an excitation light; a radio frequency (RF) exciter system configured to provide RF excitation to the magneto-optical defect center material; an optical light source configured to direct the excitation light to the magneto-optical defect center material; and an optical detector configured to receive the optical signal emitted by the magneto-optical defect center material.
Type:
Application
Filed:
May 31, 2017
Publication date:
November 30, 2017
Applicant:
LOCKHEED MARTIN CORPORATION
Inventors:
John B. STETSON, Arul MANICKAM, Peter G. KAUP, Gregory Scott BRUCE, Wilbur LEW, Joseph W. HAHN, Nicholas Mauriello LUZOD, Kenneth Michael JACKSON, Jacob Louis SWETT, Peter V. BEDWORTH, Steven W. SINTON, Duc HUYNH, Michael John DIMARIO, Jay T. HANSEN, Andrew Raymond MANDEVILLE, Bryan Neal FISK, Joseph A. VILLANI, Jon C. RUSSO, David Nelson COAR, Julie Lynne MILLER, Anjaney Pramod KOTTAPALLI, Gary Edward MONTGOMERY, Margaret Miller SHAW, Stephen SEKELSKY, James Michael KRAUSE, Thomas J. MEYER
Abstract: A system for magnetic detection includes a magneto-optical defect center material comprising a plurality of magneto-optical defect centers, a radio frequency (RF) excitation source, an optical detector, and an optical light source. The RF excitation source is configured to provide RF excitation to the material. The optical detector is configured to receive an optical signal emitted by the material. The optical light source includes a readout optical light source configured to provide optical excitation to the material to transition relevant magneto-optical defect center electrons to excited spin states in the material, and a reset optical light source configured to provide optical light to the material to reset spin states in the material to a ground state. The reset optical light source provides a higher power light than the readout optical light source.
Type:
Application
Filed:
December 16, 2016
Publication date:
November 30, 2017
Applicant:
Lockheed Martin Corporation
Inventors:
Arul Manickam, Peter G. Kaup, Gregory Scott Bruce, Wilbur Lew
Abstract: Systems, methods, and computer program products for identifying hostile fire. A characteristic of a fired projectile is detected using an optical system and the projectile's travel path in relation to a vehicle is determined. If the determined travel path of the projectile is within a predetermined distance from the vehicle, it is determined that the projectile is hostile towards the vehicle and a warning is output.
Type:
Grant
Filed:
May 17, 2016
Date of Patent:
November 28, 2017
Assignee:
Lockheed Martin Corporation
Inventors:
Stephen C. Moraites, Shawn McPhail, Donald Sobiski
Abstract: Mechanisms for determining a network topology are disclosed. Client computer information messages are received from a plurality of client computers. The client computer information messages include a network identifier that identifies a network address of a respective client computer. A first link table that identifies ports of a first switch device and corresponding network identifiers of at least some client computers is received from the first switch device. A second link table that identifies ports of a second switch device and corresponding network identifiers of other client computers is received from the second switch device. A nodal tree structure is generated that identifies the plurality of client computers, the communication links between the plurality of client computers, the first switch device, and the second switch device based on the client computer information messages, the first link table, and the second link table.
Type:
Grant
Filed:
March 12, 2014
Date of Patent:
November 28, 2017
Assignee:
Lockheed Martin Corporation
Inventors:
Jason E. Athey, Brennan J. Jones, Huy D. Truong
Abstract: An aircraft includes a fuselage, a wing, a ducted fan and a controller. The wing and the ducted fan are coupled to the fuselage. The controller is operable to control the aircraft in a vertical flight mode, a horizontal flight more, and transition the aircraft from the vertical flight mode to the horizontal flight mode.
Abstract: A method for making an electromagnetic band gap structure includes performing a single full wave simulation for the structure using a computer to perform the simulation, extracting a multiple port scattering matrix based on the single full wave simulation using a computer, and measuring or estimating a transmission of waves across the body between a first port and a second port of the body. The body has multiple ports between the first port and the second port that are defined by scattering elements using the computer. The matrix may be reduced to a two by two matrix recursively one dimension at a time using the computer.
Type:
Grant
Filed:
April 8, 2013
Date of Patent:
November 28, 2017
Assignees:
The Penn State Research Foundation, Lockheed Martin Corporation
Inventors:
Douglas H. Werner, Spencer Martin, Erik Lier, Matthew Bray
Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
Type:
Grant
Filed:
January 21, 2016
Date of Patent:
November 28, 2017
Assignee:
Lockheed Martin Corporation
Inventors:
John B. Stetson, Jr., Jeff D. Cammerata
Abstract: A Stacking Apparatus is proposed that performs the purpose of receiving the boxes being produced by a Rotary Die Cutter and transporting the boxes through the apparatus such that stacks of the boxes are created and exit from the discharge end of the apparatus. It embodies the four functional modules, Layboy Function, Shingling Function, Stacking Function and Hopper Function. These four functions are embodied such that it has the advantages of a fixed position Hopper Function and still provides Die Board Access, Running Layboy Roll Out and Sample Sheets.
Abstract: Deriving a clean timing signal from a waveform is disclosed. A sensor-of-interest (SOI) sample set and a waveform sample set that correspond to the SOI sample set in time is collected. The waveform sample set is partitioned into a plurality of waveform sample subsets, and the SOI sample set is partitioned into a plurality of SOI sample subsets, each SOI sample subset corresponding to one of the plurality of waveform sample subsets. A plurality of waveform sample subset angular speeds is determined, wherein each waveform sample subset angular speed corresponds to a different waveform sample subset. An aggregate mean angular speed based on the plurality of waveform sample subset angular speeds is determined. Each SOI sample subset is resampled to the aggregate mean angular speed based on the corresponding waveform sample subset angular speed to generate a plurality of resampled SOI subsets.
Abstract: A system, method, and device for RF upconversion. The system can include a laser, two EAMs, a photonic filter, a photonic service filter, two photodiodes, and a mixer. The first EAM can convert a received RF signal into the photonic domain by modulating an optical signal (received from the laser) based on the received RF signal to output a modulated optical signal. The photonic filter can output a filtered optical signal based on the modulated optical signal to the first photodiode which can output a filtered RF signal in the RF domain. The second EAM can output an LO modulated optical signal based on a received LO to the service filter which can output a filtered LO optical signal to the second photodiode which can output a filtered LO signal in the RF domain. The mixer can mix the filtered RF and LO signals to generate an IF signal.
Type:
Grant
Filed:
June 8, 2017
Date of Patent:
November 28, 2017
Assignee:
Lockheed Martin Corporation
Inventors:
Andrew F. Schaefer, Paul T. Coyne, John C. Ceccherelli
Abstract: The invention relates to an illumination device comprising a group of first light sources, a plurality of optical lenses, a plurality of beam generating elements, where each of the beam generating elements is configured to collect the light of at least one first light source to generate a light beam of the collected light and to pass the generated light beam to one of the optical lenses, a group of second light sources, and a plurality of shielding elements, where each shielding element is arranged between at least one of the second light sources and one of the plurality of optical lenses in such a way that said at least one of the second light source illuminates only one of the plurality of optical lenses.
Abstract: Methods and configurations are disclosed for exploiting characteristic magnetic signature of electrical power transmission and distribution lines for navigation.
Abstract: According to some aspects, a thermal insulation material is provided, comprising a first insulation layer having a cellular structure, wherein cells of the cellular structure comprise an inorganic insulator in a powder form and a second insulation layer comprising inorganic fibers. According to some aspects, a fire protection thermal insulation system is provided, comprising a first insulation layer having a cellular structure, wherein cells of the cellular structure comprise an inorganic insulator in a powder form, the first insulation layer on a fire facing side of the thermal insulation system, and a second insulation layer comprising inorganic fibers, the second insulation layer on a non-fire facing side of the thermal insulation system.
Abstract: A magnetic sensor assembly includes a base substrate and a material assembly. The material assembly is formed on the base substrate. The material assembly includes an assembly substrate. A magneto-optical defect center material having a plurality of magneto-optical defect centers is formed on the assembly substrate. A radio frequency (RF) excitation source is formed on the magneto-optical defect center material.
Abstract: A device includes a diamond with one or more nitrogen vacancies, a light emitting diode configured to emit light that travels through the diamond, and a photo sensor configured to sense the light. The device also includes a processor operatively coupled to the photo sensor. The processor is configured to determine, based on the light sensed by the photo sensor, a magnetic field applied to the diamond.
Type:
Grant
Filed:
July 25, 2016
Date of Patent:
November 21, 2017
Assignee:
Lockheed Martin Corporation
Inventors:
Joseph W. Hahn, Gregory S. Bruce, Wilbur Lew