Patents Assigned to Mascoma Corporation
  • Publication number: 20150024438
    Abstract: The present invention provides for heterologous expression of termite and termite-associated symbiont cellulases. The cellulases can, for example, be codon-optimized and expressed in yeast host cells, such as the yeast Saccharomyces cerevisiae. The cellulases can also be co-expressed in host cells with other cellulases. The expression in such host cells of the termite and termite-associated symbiont cellulases, and variants and combinations thereof, result in yeast with improved cellulosic activity. Thus, such genes and expression systems are useful for efficient and cost-effective consolidated bioprocessing systems.
    Type: Application
    Filed: February 24, 2014
    Publication date: January 22, 2015
    Applicant: Mascoma Corporation
    Inventors: Elena E. Brevnova, Vineet Rajgarhia, Mark Mellon, Anne Warner, John McBride, Chhayal Gandhi, Erin Wiswall
  • Publication number: 20150024450
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of ethanol. Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: May 7, 2013
    Publication date: January 22, 2015
    Applicant: Mascoma Corporation
    Inventors: David Anthony Hogsett, Vineet Badriphrajad Rajgarhia
  • Publication number: 20140370561
    Abstract: One aspect of the invention relates to industrial bioconversion of the xylose portion of biomass materials into fuels and chemicals. Another aspect of the invention relates to industrial bioconversion of the xylan portion of biomass materials into fuels and chemicals. In one embodiment, the invention is directed to the bacterium Clostridium thermocellum, a highly cellulolytic organism that has much potential as a biocatalyst in a consolidated bioprocess configuration. In some embodiments, the invention is a genetic modification that confers the ability to ferment xylose to C. thermocellum and the strains created with this modification. In some embodiments, the genetic modification is composed of two genes contained in an operon from T. saccharolyticum. The genes express proteins with xylose isomerase (XI) and xylulokinase activites (XK). In other embodiments, the invention relates to a recombinant Clostridium thermocellum host cell capable of fermenting xylan.
    Type: Application
    Filed: December 22, 2011
    Publication date: December 18, 2014
    Applicant: Mascoma Corporation
    Inventors: Aaron Argyros, Trisha Barrett, Nicky Caiazza, Dave Hogsett
  • Publication number: 20140356921
    Abstract: The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.
    Type: Application
    Filed: September 28, 2012
    Publication date: December 4, 2014
    Applicant: Mascoma Corporation
    Inventors: Yu Deng, Daniel G. Olson, Johannes Pieter van Dijken, Arthur J. Shaw, IV, Aaron Argyros, Trisha Barrett, Nicky Caiazza, Christopher D. Herring, Stephen R. Rogers, Frank Agbogbo
  • Publication number: 20140308724
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: February 12, 2014
    Publication date: October 16, 2014
    Applicants: Stellenbosch University, Mascoma Corporation
    Inventors: Elena BREVNOVA, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20140186930
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 3, 2014
    Applicant: MASCOMA CORPORATION
    Inventors: Aaron Argyros, William Ryan Silllers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 8765428
    Abstract: The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 1, 2014
    Assignee: Mascoma Corporation
    Inventors: Christopher D. Herring, Chaogang Liu, John Bardsley
  • Patent number: 8658398
    Abstract: The present invention provides for heterologous expression of termite and termite-associated symbiont cellulases. The cellulases can, for example, be codon-optimized and expressed in yeast host cells, such as the yeast Saccharomyces cerevisiae. The cellulases can also be co-expressed in host cells with other cellulases. The expression in such host cells of the termite and termite-associated symbiont cellulases, and variants and combinations thereof, result in yeast with improved cellulosic activity. Thus, such genes and expression systems are useful for efficient and cost-effective consolidated bioprocessing systems.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 25, 2014
    Assignee: Mascoma Corporation
    Inventors: Elena E. Brevnova, Vineet Rajgarhia, Mark Mellon, Anne Warner, John McBride, Chhayal Gandhi, Erin Wiswall
  • Publication number: 20130323822
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 5, 2013
    Applicant: Mascoma Corporation
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail S. Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20130323766
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: August 5, 2011
    Publication date: December 5, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, Aaron Argyros, David A. Hogsett
  • Publication number: 20130273555
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: May 5, 2011
    Publication date: October 17, 2013
    Applicant: Mascoma Corporation
    Inventors: William Ryan Sillers, Hans Van Dijken, Steve Licht, Arthur J. Shaw, IV, Alan Benjamin Gilbert, Aaron Argyros, Allan C. Froehlich, John E. McBride, Haowen Xu, David A. Hogsett, Vineet B. Rajgarhia
  • Patent number: 8470592
    Abstract: The present invention provides for the isolation and characterization of the cbh1 gene from Schizochytrium aggregatum. In particular, the present invention provides for the nucleic acid and amino acid sequences of Schizochytrium aggregatum cbh1, and domains, variants and derivatives thereof. The present invention further provides for the heterologous expression of Schizochytrium aggregatum Cbh1 in host cells, including yeast, e.g., Saccharomyces cerevisiae. Expression of Schizochytrium aggregatum Cbh1 in host cells will augment cellulose digestion and facilitate ethanol production by those host cells on cellulosic substrates. In certain embodiments, heterologous expression in Saccharomyces cerevisiae is in coordination with heterologous expression of other known, or newly identified saccharolytic enzymes. Therefore, the present invention also provides that the novel Schizochytrium aggregatum Cbh1 gene can utilized in a consolidated bioprocessing system.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: June 25, 2013
    Assignee: Mascoma Corporation
    Inventors: Elena E. Brevnova, Jim Flatt, Chhayal Gandhi, Vineet Rajgarhia, John McBride, Anne Warner
  • Patent number: 8435770
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of ethanol. Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: May 7, 2013
    Assignee: Mascoma Corporation
    Inventors: David Anthony Hogsett, Vineet Badriphrajad Rajgarhia
  • Publication number: 20120149077
    Abstract: The present invention provides for novel metabolic pathways leading to acrylate formation in a consolidated bio-processing system (CBP) where lignocellulosic biomass is efficiently converted to acrylate. In one such metabolic pathway, pyruvate is converted to lactate, which is converted to lactoyol-CoA, which is converted to acryloyl-CoA, and which is finally converted to acrylate. In another such metabolic pathway, pyruvate is converted to L-?-alanine, which is converted to L-aspartate, which is converted to ?-alanine, which is converted to ?-alanyl-CoA, which is converted to acryloyl-CoA, and which is finally converted to acrylate. In yet another metabolic pathway, pyruvate is converted to lactate, and then lactate is converted directly to acrylate.
    Type: Application
    Filed: March 12, 2010
    Publication date: June 14, 2012
    Applicant: Mascoma Corporation
    Inventors: Arthur J. Shaw, IV, Vineet Rajgarhia
  • Publication number: 20120108798
    Abstract: The present invention is directed to a process of producing substantially pure lignin from lignocellulosic biomass, which comprises: pre-treating a lignocellulosic feedstock to produce a reactive lignin-carbohydrate mixture; biologically-reacting the carbohydrates in the mixture, separating remaining solids from the liquid fermentation products, and drying the resulting solids to yield a substantially pure lignin product. Optionally, the lignin product may be washed and subjected to a second hydrolysis step. Optionally, the lignin product may be further processed by hydrotreating and/or pyrolysis in order to yield desirable products such as fuel additives.
    Type: Application
    Filed: October 16, 2009
    Publication date: May 3, 2012
    Applicant: Mascoma Corporation
    Inventors: Kevin S. Wenger, David A. Hogsett, Michael Ladisch, John Basdsley
  • Publication number: 20120094343
    Abstract: One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
    Type: Application
    Filed: November 12, 2009
    Publication date: April 19, 2012
    Applicant: Mascoma Corporation
    Inventors: David A. Hogsett, Vineet Rajgarhia, Arthur J. Shaw, IV, Nicky C. Caiazza
  • Publication number: 20120040409
    Abstract: Thermophilic gram-positive anaerobic host cells, for example Thermoanaerobacterium saccharolyticum (“T sacch”), express heterologous biomass degrading enzymes, such as cellulases, and are able to produce useful fermentation products from cellulose. Useful fermentation products include, for example, ethanol, acetic acid, lactic acid or CO2. In order to provide maximum expression and activity levels, biomass degrading enzymes can be expressed from codon-optimized nucleotide sequences, can be expressed under the control of a high-efficiency promoter, and/or can be fused to a signal peptide. In addition, the host cell, for example, a T sacch host cell, can be genetically altered to further improve ethanol production, for example by disrupting the production of organic products other than ethanol.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 16, 2012
    Applicant: Mascoma Corporation
    Inventors: Heídi Hau, Chales Rice, Chris Herring, John Mcbride, Arhur J. Shaw. IV, Erin Wiswall
  • Publication number: 20120003701
    Abstract: The present invention provides for heterologous expression of termite and termite-associated symbiont cellulases. The cellulases can, for example, be codon-optimized and expressed in yeast host cells, such as the yeast Saccharomyces cerevisiae. The cellulases can also be co-expressed in host cells with other cellulases. The expression in such host cells of the termite and termite-associated symbiont cellulases, and variants and combinations thereof, result in yeast with improved cellulosic activity. Thus, such genes and expression systems are useful for efficient and cost-effective consolidated bioprocessing systems.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 5, 2012
    Applicant: MASCOMA CORPORATION
    Inventors: Elena E. Brevnova, Vineet Rajgarhia, Mark Mellon, Anne Warner, John Mcbride, Chhayal Gandhi, Erin Wiswall
  • Publication number: 20110312054
    Abstract: The present invention provides for the isolation and characterization of the cbh1 gene from Schizochytrium aggregatum. In particular, the present invention provides for the nucleic acid and amino acid sequences of Schizochytrium aggregatum cbh1, and domains, variants and derivatives thereof. The present invention further provides for the heterologous expression of Schizochytrium aggregatum Cbh1 in host cells, including yeast, e.g., Saccharomyces cerevisiae. Expression of Schizochytrium aggregatum Cbh1 in host cells will augment cellulose digestion and facilitate ethanol production by those host cells on cellulosic substrates. In certain embodiments, heterologous expression in Saccharomyces cerevisiae is in coordination with heterologous expression of other known, or newly identified saccharolytic enzymes. Therefore, the present invention also provides that the novel Schizochytrium aggregatum Cbh1 gene can utilized in a consolidated bioprocessing system.
    Type: Application
    Filed: July 7, 2009
    Publication date: December 22, 2011
    Applicant: Mascoma Corporation
    Inventors: Elena E. Brevnova, Jim Flatt, Chhayal Gandhi, Vineet Rajgarhia, John McBride, Anne Warner
  • Publication number: 20110281362
    Abstract: The present invention relates to methods for transforming Gram-positive, anaerobic, thermophilic bacteria via electroporation and Gram-positive, anaerobic, thermophilic bacteria transformed by the disclosed methods. The methods employ voltage pulsing schemes that decrease arcing such that increased transformation efficiency and cell viability is observed. The present invention is further directed to a method for transforming Gram-positive, anaerobic, thermophilic bacteria via electroporation using recovery/selection temperatures to effect increased transformation efficiency in difficult to transform bacteria.
    Type: Application
    Filed: October 13, 2009
    Publication date: November 17, 2011
    Applicant: Mascoma Corporation
    Inventor: Daniel G. Olson