Patents Assigned to Materia, Inc.
  • Publication number: 20170130089
    Abstract: A method of improving the adhesion of metathesis compositions, such as ring-opening metathesis polymerization (ROMP) compositions, to a substrate is disclosed, in which an adhesion promoter is added to a polymerizable resin composition in order to improve the adhesion of the polymerizing resin to a substrate material. The addition of the adhesion promoter has been found to provide beneficial improvements in the adhesion of metathesis, especially ROMP, compositions to substrates, particularly glass surfaces, leading to improved characteristics in ROMP materials formed therefrom. The adhesion promoter generally comprises a functionalized silane compound and a peroxide compound. A ROMP composition is further disclosed comprising a cyclic olefin, a ROMP metathesis catalyst, and the adhesion promoter. Polymer products produced via metathesis (ROMP) reactions of the invention may be utilized to provide a wide range of materials and in a variety of composite applications.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Applicant: MATERIA, INC.
    Inventors: Anthony R. STEPHEN, Christopher J. CRUCE, Mark S. TRIMMER, Michael A. GIARDELLO
  • Patent number: 9598531
    Abstract: This invention relates to olefin metathesis catalysts and methods for controlling olefin metathesis reactions. More particularly, the present invention relates to methods and compositions for catalyzing and controlling ring opening metathesis polymerization (ROMP) reactions and the manufacture of polymer articles via ROMP. This invention also relates to olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts, wherein the at least two metal carbene olefin metathesis catalysts are structurally different, are chemically different, are distinct compounds, are not isomers, are not structural isomers, are not diastereoisomers, are not stereoisomers, are not enantiomers, or are not cis/trans isomers of each other, or any combinations thereof.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: March 21, 2017
    Assignee: MATERIA, INC.
    Inventors: Anthony R. Stephen, Christopher J. Cruce, Michael A. Giardello
  • Patent number: 9527982
    Abstract: This invention relates to compositions and methods for improving the adhesion of resin compositions to substrate materials. More particularly, the invention relates to compositions and methods for improving the adhesion of ROMP compositions to substrate materials using an adhesion promoter composition, where the adhesion promoter composition comprises a pre-reacted mixture comprising at least one compound containing at least two isocyanate groups and at least one compound comprising a heteroatom-containing functional group and a metathesis active olefin, where the adhesion promoter composition possesses in-resin storage stability when added to a resin composition, particularly a cyclic olefin resin composition, such as a ROMP composition. The polymer products produced via ROMP reactions of the invention may be utilized for a wide range of materials and composite applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: December 27, 2016
    Assignee: MATERIA, INC.
    Inventors: Christopher J. Cruce, Brian Edgecombe, Paul W. Boothe, Michael A. Giardello
  • Patent number: 9504997
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 29, 2016
    Assignee: MATERIA, INC.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Patent number: 9452568
    Abstract: A vacuum-assisted resin transfer molding (VARTM) method is disclosed, the method comprising: providing a vacuum-assisted resin transfer mold assembly comprising a mold having a first mold surface and a second mold surface arranged to enclose a laminate assembly within a space between the first and second mold surfaces when the laminate assembly is placed on the first mold surface; providing a laminate assembly comprising a laminate pre-form, a peel ply, and a resin distribution media pervious to the flow of a resin, the laminate pre-form having first and second surfaces, the first surface of the pre-form positioned to be in contact with the first mold surface, the peel ply positioned such that the second surface of the laminate pre-form is in contact with the peel ply, and the resin distribution media positioned to be contained within the first and second mold surfaces; positioning at least one resin flow control structure to modify the flow of resin within the resin distribution media; providing at least one
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: September 27, 2016
    Assignee: MATERIA, INC.
    Inventors: Sergio Corral, Stephen Crane, Anthony R. Stephen, Christopher J. Cruce, Everardo Garcia Flores
  • Patent number: 9427731
    Abstract: Supported olefin metathesis catalysts are disclosed, and more particularly, a supported catalyst complex comprising a catalyst composed of a Group 8 transition metal complex comprising a labile ligand and a non-labile ligand and a support, wherein the metal complex and the support are linked together by one or more linkers, in which one of the linkers connects the labile ligand of the complex to the support and the same or a different linker connects the non-labile ligand of the complex to the support. A method for preparing a supported catalyst complex is further disclosed. The invention further relates to the use of the supported olefin metathesis catalyst in performing metathesis reactions. The invention has utility in the fields of catalysis, organic synthesis, polymer chemistry, and industrial and fine chemicals chemistry.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 30, 2016
    Assignee: MATERIA, INC.
    Inventors: Daryl Allen, Michael Giardello
  • Publication number: 20160185689
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Applicant: MATERIA, INC.
    Inventor: Yann Schrodi
  • Patent number: 9339805
    Abstract: Catalytic complexes including a metal atom having anionic ligands, at least one nucleophilic carbene ligand, and an alkylidene, vinylidene, or allenylidene ligand. The complexes are highly stable to air, moisture and thermal degradation. The complexes are designed to efficiently carry out a variety of olefin metathesis reactions.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: May 17, 2016
    Assignee: MATERIA, INC.
    Inventors: Steven P. Nolan, Jinkun Huang
  • Patent number: 9255117
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 9, 2016
    Assignee: MATERIA, INC.
    Inventor: Yann Schrodi
  • Patent number: 9238709
    Abstract: The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 19, 2016
    Assignees: MATERIA, INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Thay Ung, Yann Schrodi, Mark S. Trimmer, Andrew Hejl, Daniel Sanders, Robert H. Grubbs
  • Patent number: 9233365
    Abstract: Catalytic complexes including a metal atom having anionic ligands, at least one nucleophilic carbene ligand, and an alkylidene, vinylidene, or allenylidene ligand. The complexes are highly stable to air, moisture and thermal degradation. The complexes are designed to efficiently carry out a variety of olefin metathesis reactions.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 12, 2016
    Assignee: MATERIA, INC.
    Inventors: Steven P. Nolan, Jinkun Huang
  • Publication number: 20150202610
    Abstract: Catalytic complexes including a metal atom having anionic ligands, at least one nucleophilic carbene ligand, and an alkylidene, vinylidene, or allenylidene ligand. The complexes are highly stable to air, moisture and thermal degradation. The complexes are designed to efficiently carry out a variety of olefin metathesis reactions.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Applicant: MATERIA, INC.
    Inventors: Steven P. NOLAN, Jinkun HUANG
  • Publication number: 20150166767
    Abstract: This invention relates to compositions and methods for improving the adhesion of resin compositions to substrate materials. More particularly, the invention relates to compositions and methods for improving the adhesion of ROMP compositions to substrate materials using an adhesion promoter composition, where the adhesion promoter composition comprises a pre-reacted mixture comprising at least one compound containing at least two isocyanate groups and at least one compound comprising a heteroatom-containing functional group and a metathesis active olefin, where the adhesion promoter composition possesses in-resin storage stability when added to a resin composition, particularly a cyclic olefin resin composition, such as a ROMP composition. The polymer products produced via ROMP reactions of the invention may be utilized for a wide range of materials and composite applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 18, 2015
    Applicant: MATERIA, INC.
    Inventors: Christopher J. CRUCE, Brian EDGECOMBE, Paul W. BOOTHE, Michael A. GIARDELLO
  • Publication number: 20150165652
    Abstract: Articles of manufacture possessing corrosion resistance characteristics are described, in particular for use in the chlor-alkali and other industries. The articles are formed from a resin composition, e.g., a cyclic olefin composition, polymerized with a Group 8 olefin metathesis catalyst. In particular aspects, an electrolytic cell component, such as a cell cover for use in the electrolysis of brine, may be formed from the resin composition. Among other benefits, such articles provide improved corrosion resistance compared to articles molded from other resin compositions, such as Fiberglass reinforced polyesters and vinyl esters, and two-component dicyclopentadiene (DCPD) resins comprising molybdenum or tungsten pre-catalysts.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 18, 2015
    Applicant: MATERIA, INC.
    Inventors: Michael A. Giardello, Mark S. Trimmer, Christopher J. Cruce, Anthony R. Stephen, Stuart A. M. Toner, Albert E. Pappano
  • Publication number: 20150018559
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Application
    Filed: May 8, 2014
    Publication date: January 15, 2015
    Applicant: MATERIA, INC.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Publication number: 20140370318
    Abstract: The present invention relates to in-mold coating of a cyclic olefin polymer. More particularly, the present invention relates to methods and compositions for in-mold coating cyclic olefin polymers prepared by ring opening metathesis polymerization (ROMP) reactions and the manufacture of polymer articles via ROMP. Polymer products produced via the metathesis reactions of the invention may be utilized for a wide range of materials and composite applications. The invention has utility in the fields of polymer and material chemistry and manufacture.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 18, 2014
    Applicant: MATERIA, INC.
    Inventors: Anthony R. STEPHEN, Christopher J. CRUCE, Mark S. TRIMMER, Michael A. GIARDELLO
  • Publication number: 20140329017
    Abstract: This invention relates to compositions and methods for improving the adhesion of resin compositions to substrate materials, pre-treating substrate materials to improve the adhesion of resin compositions to the substrate materials, and/or controlling gel formation of resin compositions. More particularly, the invention relates to compositions and methods for improving the adhesion of ring opening metathesis polymerization (ROMP) compositions to substrate materials using adhesion promoters containing isocyariate groups in a resin composition. The invention also relates to methods for improving the adhesion of resin compositions to substrate materials by pre-treating substrate materials with adhesion promoters containing isocyanate groups. The invention further relates to a method of providing a gel-modified ROMP composition, in which a hydroperoxide is added to a ROMP polymerizable resin composition in order to control gel formation of the polymerizing resin.
    Type: Application
    Filed: June 17, 2012
    Publication date: November 6, 2014
    Applicant: MATERIA, INC.
    Inventors: Li-Sheng Wang, Anthony R. Stephen, Paul W. Booth, Tessa Schulze, Michael A. Giardello, Mark S. Trimmer, Christopher J. Cruce, Farshad J. Motamedi, Brian Edgecombe
  • Patent number: 8871879
    Abstract: The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 28, 2014
    Assignees: Materia, Inc., California Institute of Technology
    Inventors: Thay Ung, Yann Schrodi, Mark S. Trimmer, Andrew Hejl, Daniel Sanders, Robert H. Grubbs
  • Patent number: 8859779
    Abstract: Catalytic complexes including a metal atom having anionic ligands, at least one nucleophilic carbene ligand, and an alkylidene, vinylidene, or allenylidene ligand. The complexes are highly stable to air, moisture and thermal degradation. The complexes are designed to efficiently carry out a variety of olefin metathesis reactions.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 14, 2014
    Assignee: Materia, Inc.
    Inventors: Steven P. Nolan, Jinkun Huang
  • Publication number: 20140200382
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Application
    Filed: August 13, 2013
    Publication date: July 17, 2014
    Applicant: MATERIA, INC.
    Inventor: Yann SCHRODI