Patents Assigned to Maxeon Solar Pte. Ltd
  • Publication number: 20240145619
    Abstract: A wire bonding system attaches wires to a solar cell wafer. The wire bonding system includes a feed tube through which a wire is drawn. Rollers contact the wire through openings in the feed tube to facilitate movement of the wire. The wire bonding system includes a soldering heater tip and a wire cutter. The solar cell wafer is placed on a platform, which moves the solar cell wafer. The system has multiple lanes for attaching multiple wires to the solar cell wafer at the same time in parallel operations.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Applicant: MAXEON SOLAR PTE. LTD.
    Inventors: Vergil R. SANDOVAL, Emmanuel C. Abas, Yafu Lin
  • Publication number: 20240145609
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. A trench structure separates the P-type doped region from the N-type doped region. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. The trench structure may include a textured surface for increased solar radiation collection. Among other advantages, the resulting structure increases efficiency by providing isolation between adjacent P-type and N-type doped regions, thereby preventing recombination in a space charge region where the doped regions would have touched.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Applicant: MAXEON SOLAR PTE. LTD.
    Inventor: David D. SMITH
  • Patent number: 11973157
    Abstract: Metallization and stringing methods for back-contact solar cells, and resulting solar cells, are described. In an example, in one embodiment, a method involves aligning conductive wires over the back sides of adjacent solar cells, wherein the wires are aligned substantially parallel to P-type and N-type doped diffusion regions of the solar cells. The method involves bonding the wires to the back side of each of the solar cells over the P-type and N-type doped diffusion regions. The method further includes cutting every other one of the wires between each adjacent pair of the solar cells.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: April 30, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventor: Akira Terao
  • Patent number: 11967655
    Abstract: A bypass diode can include a first conductive region of a first conductivity type disposed above a substrate of a solar cell and a second conductive region of a second conductivity type disposed above the first conductive region. The bypass diode can include a thin dielectric region disposed directly between the first and second conductive regions.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: April 23, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Seung Bum Rim, David D. Smith
  • Patent number: 11967657
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 23, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Patent number: 11955577
    Abstract: Multi-operation tools for photovoltaic cell processing are described. In an example, a multi-operation tool includes a conveyor system to move a photovoltaic (PV) cell continuously along a conveyor path through a laser scribing station and an adhesive printing station. Furthermore, the PV cell may be aligned to a laser head of the laser scribing station and a printer head of the adhesive printing station in a single alignment operation prior to being laser scribed and printed with an adhesive in a continuous process.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 9, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Nathan Phillips Beckett, Gilad Almogy
  • Patent number: 11949026
    Abstract: A high efficiency configuration for a solar cell module comprises solar cells conductively bonded to each other in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: April 2, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventors: Ratson Morad, Gilad Almogy, Itai Suez, Jean Hummel, Nathan Beckett, Yafu Lin, John Gannon, Michael J. Starkey, Robert Stuart, Tamir Lance, Dan Maydan
  • Patent number: 11949037
    Abstract: Local patterning and metallization of semiconductor structures using a laser beam, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a method of fabricating a solar cell includes providing a substrate having an intervening layer thereon. The method also includes locating a metal foil over the intervening layer. The method also includes exposing the metal foil to a laser beam, wherein exposing the metal foil to the laser beam forms openings in the intervening layer and forms a plurality of conductive contact structures electrically connected to portions of the substrate exposed by the openings.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, Taeseok Kim
  • Patent number: 11942565
    Abstract: Methods of fabricating solar cell emitter regions using substrate-level ion implantation, and resulting solar cells, are described. In an example, a method of fabricating a solar cell involves forming a lightly doped region in a semiconductor substrate by ion implantation, the lightly doped region of a first conductivity type of a first concentration. The method also involves forming a first plurality of dopant regions of the first conductivity type of a second, higher, concentration by ion implantation, the first plurality of dopant regions overlapping with a first portion of the lightly doped region. The method also involves forming a second plurality of dopant regions by ion implantation, the second plurality of dopant regions having a second conductivity type of a concentration higher than the first concentration, and the second plurality of dopant regions overlapping with a second portion of the lightly doped region and alternating with but not overlapping the first plurality of dopant regions.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 26, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Staffan Westerberg, Timothy Weidman, David D. Smith
  • Patent number: 11942561
    Abstract: A high efficiency configuration for a solar cell module comprises solar cells conductively bonded to each other in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: March 26, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventors: Ratson Morad, Gilad Almogy, Itai Suez, Jean Hummel, Nathan Beckett, Yafu Lin, John Gannon, Michael J. Starkey, Robert Stuart, Tamir Lance, Dan Maydan
  • Patent number: 11935972
    Abstract: Tri-layer semiconductor stacks for patterning features on solar cells, and the resulting solar cells, are described herein. In an example, a solar cell includes a substrate. A semiconductor structure is disposed above the substrate. The semiconductor structure includes a P-type semiconductor layer disposed directly on a first semiconductor layer. A third semiconductor layer is disposed directly on the P-type semiconductor layer. An outermost edge of the third semiconductor layer is laterally recessed from an outermost edge of the first semiconductor layer by a width. An outermost edge of the P-type semiconductor layer is sloped from the outermost edge of the third semiconductor layer to the outermost edge of the third semiconductor layer. A conductive contact structure is electrically connected to the semiconductor structure.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: March 19, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Kieran Mark Tracy, David D. Smith, Venkatasubramani Balu, Asnat Masad, Ann Waldhauer
  • Patent number: 11923474
    Abstract: A solar cell can include a conductive foil having a first portion with a first yield strength coupled to a semiconductor region of the solar cell. The solar cell can be interconnected with another solar cell via an interconnect structure that includes a second portion of the conductive foil, with the interconnect structure having a second yield strength greater than the first yield strength.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 5, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Thomas P. Pass, Gabriel Harley, David Fredric Joel Kavulak, Richard Hamilton Sewell
  • Patent number: 11923473
    Abstract: A high efficiency configuration for a solar cell module comprises solar cells arranged in an overlapping shingled manner and methods for assembling solar cells in a shingled manner. Solar cells in the module are electrically connected in series by front side ribbons and separate rear side ribbons. The front-side ribbons have a smaller cross-sectional width while the rear-side ribbons are thinner and wider.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: March 5, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Jianfang Si, Yafu Lin
  • Patent number: 11901470
    Abstract: Wire-based metallization and stringing techniques for solar cells, and the resulting solar cells, modules, and equipment, are described. In an example, a string of solar cells includes a plurality of back-contact solar cells, wherein each of the plurality of back-contact solar cells includes P-type and N-type doped diffusion regions. A plurality of conductive wires is disposed over a back surface of each of the plurality of solar cells, wherein each of the plurality of conductive wires is substantially parallel to the P-type and N-type doped diffusion regions of each of the plurality of solar cells. One or more of the plurality of conductive wires adjoins a pair of adjacent solar cells of the plurality of solar cells and has a relief feature between the pair of adjacent solar cells.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 13, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Richard Hamilton Sewell, Matthieu Minault Reich, Andrea R. Bowring, Arbaz Shakir, Ryan Reagan, Matthew Matsumoto
  • Publication number: 20240048093
    Abstract: One embodiment is a photovoltaic (PV) module including a frame to receive a perimeter of a backside of a photovoltaic (PV) laminate. The cross rail assembly may include: a conductive frame to receive a perimeter of a backside of a photovoltaic (PV) laminate; one or more conductive cross rail members provide structural rigidity to the conductive frame; and one or more pairs of couplers coupled to the conductive frame, wherein: at least one coupler comprises a grounding coupler having a first keyed section to insert into an opening in the conductive frame and a second keyed section to mate with an end of a conductive cross rail member of the one or more conductive cross rail members to ground the conductive cross rail member to the frame; or at least one coupler of at least one of the one or more pairs includes a length to define a cabling channel.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: Maxeon Solar Pte. Ltd.
    Inventor: Lee J. Gorny
  • Patent number: 11894485
    Abstract: A wire bonding system attaches wires to a solar cell wafer. The wire bonding system includes a feed tube through which a wire is drawn. Rollers contact the wire through openings in the feed tube to facilitate movement of the wire. The wire bonding system includes a soldering heater tip and a wire cutter. The solar cell wafer is placed on a platform, which moves the solar cell wafer. The system has multiple lanes for attaching multiple wires to the solar cell wafer at the same time in parallel operations.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: February 6, 2024
    Assignee: Maxeon Solar Pte. Ltd
    Inventors: Vergil R. Sandoval, Emmanuel C. Abas, Yafu Lin
  • Patent number: 11894472
    Abstract: Approaches for fabricating foil-based metallization of solar cells based on a leave-in etch mask, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes metal foil portions in alignment with corresponding ones of the alternating N-type and P-type semiconductor regions. A patterned wet etchant-resistant polymer layer is disposed on the conductive contact structure. Portions of the patterned wet etchant-resistant polymer layer are disposed on and in alignment with the metal foil portions.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: February 6, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Taeseok Kim, Gabriel Harley
  • Patent number: D1013619
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 6, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventors: Ratson Morad, Gilad Almogy, Itai Suez, Jean Hummel, Nathan Beckett
  • Patent number: D1016733
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: March 5, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventors: Hai-Yue Han, Katherine Han
  • Patent number: D1016736
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: March 5, 2024
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventors: Tamir Lance, David Okawa, Ryan Reagan, Brian Wares, Laurence Mackler, Hikaru Iwasaka, Alexander Keller