Abstract: An electronic circuit arrangement for receiving low-frequency electromagnetic waves is proposed, having an inductor (L) acting as an antenna for generating a received signal, having a first receiver (2), connected to the inductor (L), for decoding a first component of the received signal and having a second receiver (3), connected to the inductor (L), for decoding a second component of the received signal, wherein at least the second receiver (3) is connected to the inductor (L) via an attenuator element (4) having adjustable attenuation, wherein at least one adjustment signal generation circuit (5, 6) is provided for generating an adjustment signal corresponding to a voltage of the received signal which is fed to the attenuator element (4) for adjusting the attenuation.
Abstract: The invention relates to a MEMS gyroscope for detecting rotational motions about an x-, y-, and/or Z-axis, in particular a 3-D sensor, containing a substrate, several, at least two, preferably four, drive masses (2) that are movable radially With respect to a center and drive elements (7) for the oscillating vibration of the drive masses (2) in order to generate Coriolis forces on the drive masses (2) in the event of rotation of the substrate about the x-, y-, and/or Z-axis. The oscillating drive masses (2) are connected to at least one further non oscillating sensor mass (3) that however can be rotated about the x-, y-, and/or Z-axis together With the oscillating drive masses (2) on the substrate. Sensor elements (9, 10) are used to detect detections of the sensor mass (3) and/or drive masses (2) in relation to the substrate due to the generated Coriolis forces. At least two, preferably four anchors (5) are used to rotatably fasten the sensor mass (3) to the substrate by means of springs (4).
Abstract: Wafer level packaging using a lead-frame. When used to package two or more chips, a final product having QFN package-like finish. The final product will also have a performance rivaling or exceeding that of a corresponding monolithic chip because of the very close connection of the two or more chips and the ability to tailor the fabrication processing of each chip to only that required for the devices on that chip. The wafer level packaging can also be used to package monolithic chips, as well as chips having active devices on one chip and passive devices on a second chip. Various exemplary embodiments are disclosed.
Abstract: Wafer level packaging using a lead-frame. When used to package two or more chips, a final product having QFN package-like finish. The final product will also have a performance rivaling or exceeding that of a corresponding monolithic chip because of the very close connection of the two or more chips and the ability to tailor the fabrication processing of each chip to only that required for the devices on that chip. The wafer level packaging can also be used to package monolithic chips, as well as chips having active devices on one chip and passive devices on a second chip. Various exemplary embodiments are disclosed.
Abstract: A method for gesture determination (e.g., discerning complex gestures) via an electronic system (e.g., a gesture sensing system) including an array of optical sensors is described herein. The method includes detecting a plurality of sub-gestures (e.g., simple gestures provided by a target located proximate to the system) via the array of optical sensors. The sensors generate signals based upon the detected (e.g., received) sub-gestures and transmit the signals to a processor of the gesture sensing system. The processor processes the signals to obtain data associated with the sub-gestures and analyzes the sub-gesture data to determine if the sub-gestures collectively constitute a gesture (e.g., complex gesture). When the analyzing indicates that the sub-gestures collectively constitute a complex gesture, the gesture sensing system detects the complex gesture.
Abstract: Light sensor devices are described that have a glass substrate, which includes a lens to focus light over a wide variety of angles, bonded to the light sensor device. In one or more implementations, the light sensor devices include a substrate having a photodetector formed therein. The photodetector is capable of detecting light and providing a signal in response thereto. The sensors also include one or more color filters disposed over the photodetector. The color filters are configured to pass light in a limited spectrum of wavelengths to the photodetector. A glass substrate is disposed over the substrate and includes a lens that is configured to collimate light incident on the lens and to pass the collimated light to the color filter.
Type:
Grant
Filed:
December 27, 2011
Date of Patent:
July 15, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
Abstract: A frequency mixer is disclosed. In an implementation, the multi-LO band switched-core includes a single field-effect transistor (FET) ring having a first mixer core and a second mixer core. The first mixer core and the second mixer core configured to connect to a radio frequency (RF) port and an intermediate frequency (IF) port. The frequency mixer also includes a first local oscillator (LO) transformer and a second LO transformer. The first LO transformer is configured to furnish a first LO signal occurring in a first limited range of frequencies to the first mixer core, and the second LO transformer is configured to furnish a second LO signal occurring in a second limited range of frequencies to the second mixer core.
Abstract: According to one embodiment of the invention, an integrated circuit comprises an encoding module, a modulation module and a spectral shaped module. The encoding module includes an interleaver that adapted to operate in a plurality of modes including a first mode and a second mode. The interleaver performs repetitive encoding when placed in the second mode. The modulation module is adapted to compensate for attenuations that are to be realized during propagation of a transmitted signal over the power line. The spectral shaped module is adapted to compensate for amplitude distortion and further compensates for attenuations that will be realized during propagation of the transmitted signal over the power line.
Type:
Grant
Filed:
November 19, 2012
Date of Patent:
July 15, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Kaveh Razazian, Maher Umari, Amir Hosein Kamalizad, Victor V. Loginov, Michael V. Navid
Abstract: A micro gyroscope determine three-dimensional rotational movements is mounted on a substrate on which a plurality of masses tangentially oscillate about the z axis perpendicular to the substrate. The oscillating masses are fastened to the substrate by springs and bolts. Driving elements maintain oscillating tangential vibrations of the masses about the z axis. Upon rotation of the substrate about any spatial axis, the masses are subjected to deflections caused by Corolis forces that are detected by sensor elements. Certain masses oscillating about the z axis are tiltable about the x axis, while some others are tiltable about the y axis. At least one other mass is configured to deflect radially to the z axis in a x-y plane parallel to the plane of the substrate. This mass is assigned a sensor element that can deflect radially with respect to the axis but cannot oscillate about the z axis.
Abstract: System and method for transmitting video and audio data words via a serial data link. A transmitting device includes a first module for generating an audio data frame comprising an audio data word and a frame separation code; and a second module for generating high speed data frames each comprising at least a portion of a video data word and only a portion of the audio data frame, and for transmitting the high speed data frames via the serial data link. A receiving device includes a first module for forming the video data word from one or more high speed data frames, and a second module for forming the audio data frame from portions of high speed data frames. The second module may extract the audio data word from the audio data frame, and generate an audio clock based on a rate in which audio data words are received.
Type:
Grant
Filed:
November 3, 2009
Date of Patent:
July 15, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Arda Kamil Bafra, Levent Yakay, Mustafa Ertugrul Oner
Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
Abstract: A gesture sensing device includes one or more sensors and a processor for processing sensed voltages output from the sensors based on ambient light and/or reflected light received by the sensors. The processor determines an ambient light level and/or a distance between the target and the sensors such that, if the ambient light level exceeds an ambient light threshold and/or the distance is less than a distance threshold, the processor determines the motion of a target relative to the sensors based on the ambient light instead of the reflected light.
Abstract: Various embodiments of the invention provide power factor correction in solid state lighting applications. In certain embodiments, an LED driver for an LED array is controlled for power factor correction by a control circuit block. The control circuit block comprises electronic circuitry that enables the input current to the LED driver to be measured and controlled. This control circuit block comprises at least one switching device that enables an alternating form of current at a particular frequency to be applied to the LED array regardless of whether the main power source is a DC or AC power source.
Abstract: An analog to digital detector circuit includes a comparator circuit and a counter that generates a digital counter value. A digital to analog converter receives an inverse of the digital counter value of the counter and generates a first voltage. A variable current source receives the digital counter value of the counter and generates a first current.
Type:
Grant
Filed:
January 18, 2013
Date of Patent:
July 1, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Luca Bertolini, Andrea Milanesi, Paolo Boi
Abstract: A digital-to-analog converter (DAC) includes, in a segment of the DAC, a first switch and a second switch. The first switch includes a first pair of transistors having a first set of inputs and has a first output connected to an output of the DAC. The second switch includes second and third pairs of transistors having second and third sets of inputs, respectively, and has a second output that is connected to the output of the DAC. A driver module generates control signals to drive the first, second, and third sets of inputs based on data received by the DAC for conversion from digital to analog format at a conversion rate determined by a clock. The control signals toggle one of the first and second switches during each cycle of the clock.
Abstract: Aspects of the disclosure pertain to a system and method for providing temperature limiting for a voice coil of a speaker. The system and method provide the aforementioned temperature limiting based upon monitoring (e.g., measurement) of an amplifier output signal provided to the speaker. Providing the aforementioned temperature limiting promotes improved protection for the speaker.
Abstract: Techniques are described herein for a dip soldering process which provides a low-profile, low-cost solder bump formation process which may be implemented to promote package thickness scaling (e.g., reduce the overall package thickness). For example, the dip soldering process disclosed herein may enable ultra-thin wafer-level packages (WLP), ultra-thin wafer level quad-flat no-leads (WQFN) packages, or the like.
Abstract: Various embodiments of the invention allow for electronic labeling and identification of electronic equipment. Contact-based and contactless systems and methods to electronically associate hardware are described.
Abstract: Semiconductor devices are described that include a via that extends only partially through the substrate. Through-substrate vias (TSV) furnish electrical interconnectivity to electronic components formed in the substrates. In implementations, the semiconductor devices are fabricated by first bonding a semiconductor wafer to a carrier wafer with an adhesive material. The semiconductor wafer includes an etch stop disposed within the wafer (e.g., between a first surface a second surface of the wafer). One or more vias are formed through the wafer. The vias extend from the second surface to the etch stop.
Type:
Grant
Filed:
January 3, 2012
Date of Patent:
June 10, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Arkadii V. Samoilov, Tyler Parent, Larry Y. Wang
Abstract: A light sensor is described that includes a glass substrate having a diffuser formed therein and at least one color filter integrated on-chip (i.e., integrated on the die of the light sensor). In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a semiconductor substrate. At least one photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. The color filter is configured to filter light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to the photodetector. A glass substrate is positioned over the substrate and includes a diffuser. The diffuser is configured to diffuse light incident on the diffuser and to pass the diffused light to the at least one color filter for further filtering.
Type:
Grant
Filed:
December 27, 2011
Date of Patent:
June 10, 2014
Assignee:
Maxim Integrated Products, Inc.
Inventors:
Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones