Patents Assigned to McAlister Technologies, LLC
  • Patent number: 8192852
    Abstract: One embodiment of the present disclosure is directed to an insulator comprising a ceramic composition, wherein the ceramic composition comprises about 25-60% SiO2; 15-35% R2O3, wherein the R2O3 is 3-15% B2O3 and 5-25% Al2O3; 4-25% MgO+0-7% Li2O, wherein the total of MgO+Li2O is between about 6-25%; 2-20% R2O, wherein the R2O is 0-15% Na2O, 0-15% K2O, 0-15% Rb2O; 0-15% Rb2O; 0-20% Cs2O; and 4-20% F; crystalline grains, wherein the crystalline grains are substantially oriented to extend in a first direction to provide improved insulating properties in a direction perpendicular to the first direction, wherein the first direction is circumferential and the direction perpendicular to the first direction is radial; and a first zone and a second zone, wherein the first zone is in compression and the second zone is in tension.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: June 5, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8187549
    Abstract: Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods. A reactor in accordance with a particular embodiment includes a reactor vessel having a light-transmissible surface proximate to a reaction zone, and a movable reactant delivery system positioned within the reactor vessel. The reactor can further include a product removal system positioned within the reactor vessel and positioned annularly inwardly or outwardly from the delivery system. A solar concentrator is positioned to direct solar radiation through the light-transmissible surface to the reaction zone.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 29, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8187550
    Abstract: Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods. A system in accordance with a particular embodiment include a reactor having a reaction zone, a reactant source coupled in fluid in communication with the reactant zone, and a solar concentrator having at least one concentrator surface positionable to direct solar energy to a focal area. The system can further include an actuator coupled to the solar concentrator to move the solar concentrator relative to the sun, and a controller operatively coupled to the actuator.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 29, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8172990
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the first electrode is configured to control the location of nucleation of the gas by substantially separating the location of electron transfer and nucleation.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 8, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20120085643
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 12, 2012
    Applicant: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8147599
    Abstract: Apparatuses, systems, and methods for loading and/or unloading a substance into or from a sorption media. A substance is presented at an edge of the sorption media, which comprises parallel layers of a sorption material. To load (i.e., via absorption and/or adsorption) the substance into the sorption media, heat is transferred away from the sorption media, a loading voltage is applied to the sorption media, and/or a pressure is increased relative to the sorption media. To unload the substance from the sorption media, heat is transferred into the sorption media, a voltage of an opposite polarity from the loading voltage is applied to the sorption media, and/or a pressure is decreased relative to the sorption media. In some embodiments, the sorption media includes surface structures that may load molecules of the substance.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: April 3, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20120037100
    Abstract: The present disclosure is directed to various embodiments of systems and methods for cooling a combustion chamber of an engine. One method includes introducing fuel into the combustion chamber of an engine having an energy transfer device that moves through an intake stroke, a compression stroke, a power stroke, and an exhaust stroke. The method further includes monitoring a temperature of the combustion chamber. When the temperature reaches a predetermined value, the method also includes introducing coolant into the combustion chamber only during at least one of the power stroke and the exhaust stroke of the energy transfer device.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 16, 2012
    Applicant: McAlister Technologies, LLC
    Inventors: Roy E. McAlister, Melvin J. Larsen, Roy Edward McAlister
  • Patent number: 8091528
    Abstract: Embodiments of injectors configured for adaptively injecting and igniting various fuels in a combustion chamber are disclosed herein. An injector according to one embodiment includes an end portion configured to be positioned adjacent to a combustion chamber, and an ignition feature carried by the end portion and configured to generate an ignition event. The injector also includes a force generator assembly and a movable valve. The force generator assembly includes a first force generator separate from a second force generator. The first force generator creates a motive force to move the valve between the closed and open positions into the combustion chamber. The second force generator is electrically coupled to the ignition feature and provides voltage to the ignition feature to at least partially generate the ignition event.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 10, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8075749
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel configured for pressurization; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a first gas, wherein the first gas is formed during electrolysis at or near the first electrode; a second gas, wherein the second gas is formed during electrolysis at or near the second electrode; a separator; a first gas collection vessel; and a second gas collection vessel, wherein the separator includes a first inclined surface to direct flow of the electrolyte and the first gas due to a difference between density of the electrolyte and combined density of the electrolyte and the first gas such that the gas substantially flows in a direction distal the second electrode and towards the first gas collection vessel, and wherein the separa
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8074625
    Abstract: The present disclosure is directed to integrated injector/igniters providing efficient injection, ignition, and complete combustion of various types of fuels. One example of such an injectors/igniter can include a body having a base portion opposite a nozzle portion. The base portion receives the fuel into the body and the nozzle portion can be positioned adjacent to the combustion chamber. The injector further includes a valve carried by the nozzle portion that is movable between a closed position and an open position to inject the fuel into the combustion chamber. An actuator is coupled the valve and extends longitudinally through the body towards the base portion, and a driver is carried by the body and is movable between a first position and a second position. In the first position the driver does not move the actuator and in the second position the driver moves the actuator to move the valve to the open position.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8075748
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8075750
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8070835
    Abstract: Techniques, systems, apparatus and material are disclosed for generating multi-purpose H2-dense fuel for isolating contaminants and storing energy. In one aspect, a method of producing a renewable multi-purpose biomaterial for isolating a hazardous contaminant from an environment and storing energy includes dissociating biomass waste using a thermochemical reaction to produce at least one of hydrocarbon and alcohol by applying waste heat recovered from an external heat source. The method includes dissociating the at least one of hydrocarbon and alcohol to generate carbon and hydrogen. Carbon dioxide emitted from an industrial process is harvested and reacted with the hydrogen to generate the hydrogen-dense fuel. A hazardous contaminant is dissolved in the hydrogen-dense fuel operating as a solvent to generate a liquid mixture that isolates the hazardous contaminant from the environment. The hazardous contaminant includes at least one of a carbon donor and a hydrogen donor.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 6, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20110257275
    Abstract: System and method for sustainable economic development which includes hydrogen extracted from substances, for example, sea water, industrial waste water, agricultural waste water, sewage, and landfill waste water. The hydrogen extraction is accomplished by thermal dissociation, electrical dissociation, optical dissociation, and magnetic dissociation. The hydrogen extraction further includes operation in conjunction with energy addition from renewable resources, for example, solar, wind, moving water, geothermal, or biomass resources.
    Type: Application
    Filed: February 14, 2011
    Publication date: October 20, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20110253526
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 20, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20110233308
    Abstract: Embodiments of injectors suitable for injection ports having relatively small diameters are disclosed herein. An injector according to one embodiment includes a body having a first end portion opposite a second end portion. The second end portion is configured to be positioned adjacent to a combustion chamber and the first end portion is configured to be spaced apart from the combustion chamber. The injector also includes an ignition conductor extending through the body from the first end portion to the second end portion, and an insulator extending longitudinally along the ignition conductor and surrounding at least a portion of the ignition conductor. The injector further includes a valve extending longitudinally along the insulator from the first end portion to the second end portion. The valve includes a sealing end portion, and the valve is movable along the insulator between an open position and a closed position.
    Type: Application
    Filed: October 27, 2010
    Publication date: September 29, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20110230573
    Abstract: Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods. A representative reactor system in accordance with a particular embodiment includes a first reaction zone and a heat path positioned to direct heat into the first reaction zone, a reactant source coupled to the first reaction zone, and a first actuator coupled to cyclically pressurize the first reaction zone. The system can further include a second reaction zone in fluid communication with the first, a valve coupled between the first and second reaction zones to control a flow rate therebetween, and a second actuator coupled in fluid communication with the second reaction zone to cyclically pressurize the second reaction zone.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 22, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20110226988
    Abstract: Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials and associated systems and methods. A representative process includes dissociating a hydrogen donor into dissociation products by adding energy to the hydrogen donor, wherein the energy includes waste heat generated by a process other than dissociating the hydrogen donor. The process can further include providing, from the dissociation products, a structural building block and/or a hydrogen-based fuel, with the structural building block based on carbon, nitrogen, boron, silicon, sulfur, and/or a transition metal.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 22, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20110220040
    Abstract: Coupled thermal chemical reactors and engines, and associated systems and methods. A system in accordance with a particular embodiment includes a reactor vessel having a reaction zone, a hydrogen donor source coupled in fluid communication with the reaction zone, and an engine having a combustion region. The system can further include a transfer passage coupled between the combustion region and the reaction zone to transfer a reactant and/or radiate energy to the reaction zone. The system can further include a product passage coupled between the reaction zone and the combustion region of the engine to deliver to the combustion region at least a portion of a constituent removed from the reaction zone.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 15, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20110212012
    Abstract: Techniques, systems, apparatus and material are disclosed for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 1, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister