Abstract: This invention provides a continuous display with non-uniform pixel density, forming a foveated display. A single, continuous display has a higher pixel density at the center of the display than at the periphery of the display. Where two continuous displays are used in accordance with the present invention, the central forward gaze of the viewer's image will be displayed in high resolution while the leftmost portion of the left eye display will be in low resolution and the rightmost portion of the right eye display will be in low resolution. The pixel resolution of the visual display may correspond to the visual acuity of the human eye. A foveated image display system using a continuous display with non-uniform pixel density increases the field of view while reducing the image bandwidth.
Type:
Application
Filed:
May 13, 2003
Publication date:
November 18, 2004
Applicant:
MCNC Research And Development Institute
Inventors:
Michael K. Lamvik, Gary E. McGuire, John S. Lewis
Abstract: Adaptive methods and systems for applying a channel correction factor to received signals to correct errors caused by channel distortion. The channel correction factor is dynamically calculated and updated based on the received signal or signals. A receiver continuously calculates an error factor representing a deviation of the received signal from the signal being transmitted, and generates the channel correction factor based on the error factor. Since the error factor includes information related to channel distortions, the channel correction factor so calculated adapts to the change of channel characteristics. If preferred, an advanced algorithm can be used to predict the channel response for the next incoming signal such that the receiver can correct channel errors on a substantially real-time basis.
Type:
Application
Filed:
May 12, 2003
Publication date:
November 18, 2004
Applicant:
MCNC Research and Development Institute
Inventors:
Levi Kennedy, Paul Robert Runkle, Brett Dean Bradford Guenther
Abstract: A MEMS (Micro Electro Mechanical System) electrostatically operated high voltage switch or relay device is provided. These devices can switch high voltages while using relatively low electrostatic operating voltages. The MEMS device comprises a substrate, a substrate electrode, and one or more substrate contacts. The MEMS device also includes a flexible composite overlying the substrate, one or more composite contacts, and at least one insulator. The switch or relay device is provided overdrive potential through protrusions on the contact surface of the switch or relay contacts. In one embodiment the substrate contacts define protrusions on the contact surface that extend toward the flexible composite contacts. In another embodiment the flexible composite contacts define protrusions on the contact surface that extend toward the substrate contacts.
Abstract: The present invention provides for an improved electromagnetic radiation detector having a micromachined electrostatic chopper/shutter device. The MEMS flexible film chopper/shutter device provides reliability, efficiency, noise reduction and temperature fluctuation compensation capabilities to the associated electromagnetic radiation detector. An electromagnetic radiation detector having an electrostatic chopper/shutter device includes a detector material element and flexible film actuator overlying the detector material layer and moveable relative thereto. The flexible film actuator will typically include an electrode element and a biasing element such that the actuator remains in a fully curled, open state absent electrostatic voltage and moves to a fully uncurled, closed state upon the application of electrostatic voltage. Arrays that incorporate a plurality of electromagnetic radiation detectors and/or electrostatic shuttering devices are additionally provided for.
Type:
Application
Filed:
May 29, 2003
Publication date:
March 11, 2004
Applicant:
MCNC Research and Development Institute