Abstract: In some embodiments, an archery bow comprises a riser comprising a grip location and a cavity. A first limb is supported by the riser and attached by a first limb fastener. A second limb is supported by the riser and attached by a second limb fastener. A bowstring extends between the limbs. A vibration damper is located in the cavity, the vibration damper comprising a resilient member and a weight. A first distance from the bowstring to the first limb fastener is less than a second distance from the bowstring to the vibration damper.
Abstract: In some embodiments, a crossbow crank comprises a housing and a shaft rotatable with respect to the housing. A one-way mechanism is arranged to prevent rotation of the shaft in a first rotational direction, but allow rotation in a second direction. A release mechanism is arranged to disengage the one-way mechanism from the shaft. The release mechanism has a first position and a second position, wherein the release mechanism moves along a length of the shaft between the first position and the second position.
Type:
Grant
Filed:
May 12, 2016
Date of Patent:
December 10, 2019
Assignee:
MCP IP, LLC
Inventors:
Mathew A. McPherson, Mark Hayes, Jeffrey A. Ozanne, Tom Koshollek
Abstract: In some embodiments, a bow comprises a first limb supporting a first rotatable member. The first rotatable member comprises a first bowstring track and a first terminal post. A second limb supports a second rotatable member. The second rotatable member comprising a second bowstring track and a second terminal post. A bowstring comprises a first end attached to the first terminal post and a second end attached to the second terminal post. The first bowstring track and the second bowstring track are oriented in a bowstring plane, and the first terminal post is laterally offset from the bowstring plane.
Abstract: In some embodiments, a crossbow comprises a stock, a fire control assembly and a bow portion. In some embodiments, the bow portion comprises a prod, a first limb, a second limb, a first rotatable member and a second rotatable member. The crossbow comprises a drawn orientation wherein the first rotatable member overlaps with the stock. In some embodiments, a reference line oriented orthogonal to a shooting axis intersects the stock and the first rotatable member. In some embodiments, the reference line is parallel to a rotation axis of the first rotatable member.
Abstract: In some embodiments, an arrow comprises a shaft and a notch in an end of the arrow. The notch is arranged to receive a bowstring. A first finger recess and a second finger recess are located in proximity to the notch. The first finger recess and the second finger recess comprise opposed diverging surfaces.
Abstract: A fiber reinforced powder paint provides improved flexural fatigue resistance for composites substrates. Fiber loading in the powder is greater than 40%. Aramid fiber loading in an epoxy based powder paint is exemplified. A composite bow limb coated with the powder paint survives a remarkably greater number of bending cycles before failure when coated with the powder paint.
Abstract: In some embodiments, a grip for a shooting device comprises a first body portion configured for attachment to the shooting device and a second body portion engaged with the first body portion. The second body portion is moveable with respect to the first body portion between first and second positions. A biasing member is arranged to bias the second body portion to the first position.
Abstract: In some embodiments, a limb cup comprises a body and a vibration damper. The body comprises a first limb cavity and a damper housing. The damper housing comprises an aperture. The vibration damper comprises a resilient member and a weight. The first limb cavity is arranged to receive an archery bow limb. The resilient member is oriented in the aperture and supported by the damper housing. The weight is supported by the resilient member.
Abstract: In some embodiments, an archery bow riser comprises a body defining a first end, a second end and a grip portion. The body defines a shooting axis and comprises a first portion and a second portion. The first portion comprises a metal and the second portion comprises carbon fibers. The first portion extends to a first side of the shooting axis and to a second side of the shooting axis, and the second portion extends to the first side of the shooting axis and to the second side of the shooting axis.
Abstract: A trigger mechanism for use in a crossbow comprises a housing having a first slot formed in a first side and a second slot formed in a second side opposite the first side. A trigger lever, a bowstring catch and a disarm mechanism are all moveably mounted in the housing. The catch has a first end configured to engage the trigger lever and a second end configured to retain the bowstring in a cocked position. The disarm mechanism is partially positioned in the second slot and is moveable between a fixed first position proximate the housing second slot toward a second disarm position toward the housing first slot. As the disarm mechanism moves from the first position into the second position, it engages the trigger lever causing it to move out of engagement with the catch first end allowing the user to release the bowstring using the bowstring cocking device from the trigger mechanism without having to engage the trigger.
Abstract: A trigger mechanism for use in a crossbow having a bowstring, the trigger mechanism comprising a housing having a slot formed therein, a trigger lever pivotally mounted in the housing and having a trigger that extends partially outside the housing, a catch pivotally mounted in the housing, and a disarm mechanism received in the housing that is moveable between a neutral first position and a disarm second position. The catch has a first end configured to retain the bowstring in a cocked position and a second end configured to operatively engage the trigger lever. When the disarm mechanism is in the disarm second position and the user draws the bowstring further into the housing slot, the trigger mechanism is configured to allow the catch to move from the catch first position into the catch second position without requiring the user to engage the trigger (e.g., squeezing or pulling the trigger).
Abstract: In some embodiments, an archery bow comprises a riser comprising a grip location and a cavity. A first limb is supported by the riser and attached by a first limb fastener. A second limb is supported by the riser and attached by a second limb fastener. A bowstring extends between the limbs. A vibration damper is located in the cavity, the vibration damper comprising a resilient member and a weight. A first distance from the bowstring to the first limb fastener is less than a second distance from the bowstring to the vibration damper.
Abstract: In some embodiments, an archery bow comprises a riser and a load balancing limb support assembly supported by the riser. The load balancing limb support assembly comprises a body comprising a first support portion and a second support portion. A limb assembly comprises a first limb portion and a second limb portion. The first limb portion is supported by the first support portion and the second limb portion is supported by the second support portion.
Abstract: In some embodiments, a bow comprises a first limb supporting a first rotatable member. The first rotatable member comprises a first bowstring track and a first terminal post. A second limb supports a second rotatable member. The second rotatable member comprising a second bowstring track and a second terminal post. A bowstring comprises a first end attached to the first terminal post and a second end attached to the second terminal post. The first bowstring track and the second bowstring track are oriented in a bowstring plane, and the first terminal post is laterally offset from the bowstring plane.