Abstract: Soy-based high temperature products, or thermoset resins, are produced by solvent free polymerization of soy polyols and polyisocyanates at room temperature. The ratio of isocyanate equivalents to polyol equivalent used in the synthesis is greater than or equal to 3. The invented soy-based products are polyisocyanurate solid materials with excellent stability at high temperature. Heat resistance of the material is influenced by ratio of soy polyol and polyisocyanate.
Abstract: Soy-based high temperature products, or thermoset resins, are produced by solvent free polymerization of soy polyols and polyisocyanates at room temperature. The ratio of isocyanate equivalents to polyol equivalent used in the synthesis is greater than or equal to 3. The invented soy-based products are polyisocyanurate solid materials with excellent stability at high temperature. Heat resistance of the material is influenced by ratio of soy polyol and polyisocyanate.
Abstract: Methods of one-pot synthesis of high molecular weight natural oil polyols having a functionality of at least two are provided. The resultant polyols may be directly reacted with polyisocyanates to produce polyurethanes.
Abstract: Methods of coupling plant oil based polyols so as to synthesis high molecular weight plant oil polyols having a hydroxyl number between from about 40 to about 60. The resultant polyols may be directly reacted with polyisocyanates to produce polyurethanes.
Abstract: Methods of coupling plant oil based polyols so as to synthesis high molecular weight plant oil polyols having a hydroxyl number between from about 40 to about 60. The resultant polyols may be directly reacted with polyisocyanates to produce polyurethanes.
Type:
Application
Filed:
November 5, 2010
Publication date:
July 7, 2011
Applicant:
MCPU Polymer Engineering LLC, a California Limited Liability Company
Abstract: Methods of producing a hybrid petro-plant oil polyol having a high bio-content by coupling a petro-chemical polyol with a plant oil based polyol is provided, including coupling an intermediate petro-polyol prepolymer with a plant oil polyol so as to synthesize a hybrid petro-plant oil polyol having a high bio-content and a hydroxyl number of between about 50 and 60.
Type:
Application
Filed:
November 5, 2010
Publication date:
March 10, 2011
Applicant:
MCPU Polymer Engineering LLC, a California limited liability company