Abstract: An overcurrent protection control circuit for an electronic transformer includes a feedback current detection circuit, an averaging circuit and an overcurrent shutdown circuit. The feedback current detection circuit detects feedback current of an output of the electronic transformer. The averaging circuit determines an average of the feedback current detected by the feedback current detection circuit. The overcurrent shutdown circuit is configured to shutdown the output of the electronic transformer based on the average of the feedback current exceeding a predetermined threshold. The predetermined threshold indicates a short circuit condition.
Abstract: A control circuit coupled to a power line controlled by a dimmer having a switching device includes, for example, an active power factor correction circuit receiving power from a bridge rectifier and storage capacitor and drawing an average continuous current when the switching device is “on.” An LED power driving circuit receives a controlled current from the active power factor correction circuit and generates an output current received by at least one LED outputting visible light. A positive voltage feedback circuit senses a feedback voltage across the LED, through the LED power driving circuit, and sends the feedback voltage to the active power factor correction circuit. A pump back power circuit is electrically coupled to the LED power driving circuit and applies a bias voltage to an output of the bridge rectifier to power the active power factor correction circuit when the switching device is “off.
Abstract: A low voltage lighting system includes a transformer having at least a primary winding and a secondary winding. The low voltage lighting system also includes one or more lighting elements and a voltage control circuit. The lighting elements are coupled to the secondary winding. The voltage control circuit is electrically coupled with the primary winding. The voltage control circuit is configured to automatically increase the voltage applied to the primary winding of the transformer in a predetermined manner from a first voltage to a second voltage over a predetermined period of time.