Patents Assigned to MEARS Technologies, Inc.
-
Patent number: 9275996Abstract: A semiconductor device may include a substrate, and a plurality of fins spaced apart on the substrate. Each of the fins may include a lower semiconductor fin portion extending vertically upward from the substrate, and at least one superlattice punch-through layer on the lower fin portion. The superlattice punch-through layer may include a plurality of stacked groups of layers, with each group of layers of the superlattice punch-through layer comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Each fin may also include an upper semiconductor fin portion on the at least one superlattice punch-through layer and extending vertically upward therefrom. The semiconductor device may also include source and drain regions at opposing ends of the fins, and a gate overlying the fins.Type: GrantFiled: November 21, 2014Date of Patent: March 1, 2016Assignee: MEARS TECHNOLOGIES, INC.Inventors: Robert Mears, Hideki Takeuchi, Erwin Trautmann
-
Patent number: 8389974Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.Type: GrantFiled: January 31, 2011Date of Patent: March 5, 2013Assignee: Mears Technologies, Inc.Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
-
Publication number: 20110215299Abstract: A semiconductor device may include a substrate and at least one MOSFET adjacent the substrate. The MOSFET may include a superlattice channel including a plurality of stacked groups of layers, a source and a drain adjacent the superlattice channel, and a gate adjacent the superlattice channel. Each group of layers of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A first dopant may be in at least one region adjacent at least one of the source and drain, and a second dopant may also be in the at least one region. The second dopant may be different than the first dopant and reduce diffusion thereof.Type: ApplicationFiled: March 8, 2011Publication date: September 8, 2011Applicant: MEARS Technologies, Inc.Inventor: KALIPATNAM RAO
-
Publication number: 20110193063Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.Type: ApplicationFiled: January 31, 2011Publication date: August 11, 2011Applicant: MEARS TECHNOLOGIES, INC.Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
-
Patent number: 7928425Abstract: A semiconductor device which may include a semiconductor layer, and a superlattice interface layer therebetween. The superlattice interface layer may include a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.Type: GrantFiled: January 23, 2008Date of Patent: April 19, 2011Assignee: Mears Technologies, Inc.Inventor: Kalipatnam Vivek Rao
-
Patent number: 7880161Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.Type: GrantFiled: February 16, 2007Date of Patent: February 1, 2011Assignee: Mears Technologies, Inc.Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
-
Patent number: 7863066Abstract: A method for making a multiple-wavelength opto-electronic device which may include providing a substrates and forming a plurality of active optical devices to be carried by the substrate and operating at different respective wavelengths. Moreover, each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.Type: GrantFiled: February 16, 2007Date of Patent: January 4, 2011Assignee: Mears Technologies, Inc.Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
-
Publication number: 20100270535Abstract: A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.Type: ApplicationFiled: May 18, 2010Publication date: October 28, 2010Applicant: Mears Technologies, Inc.Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Robert J. Mears, Marek Hytha, Robert John Stephenson
-
Patent number: 7812339Abstract: A semiconductor device may include a semiconductor substrate having a surface, a shallow trench isolation (STI) region in the semiconductor substrate and extending above the surface thereof, and a superlattice layer adjacent the surface of the semiconductor substrate and comprising a plurality of stacked groups of layers. More particularly, each group of layers of the superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Moreover, at least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.Type: GrantFiled: April 14, 2008Date of Patent: October 12, 2010Assignee: Mears Technologies, Inc.Inventors: Robert J. Mears, Kalipatnam Vivek Rao
-
Patent number: 7781827Abstract: A semiconductor device may include at least one vertical Metal Oxide Semiconductor Field Effect Transistor (MOSFET) on a substrate. The vertical MOSFET may include at least one superlattice including a plurality of laterally stacked groups of layers transverse to the substrate. The vertical MOSFET(s) may further include a gate laterally adjacent the superlattice, and regions vertically above and below the superlattice and cooperating with the gate for causing transport of charge carriers through the superlattice in the vertical direction. Each group of layers of the superlattice may include stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.Type: GrantFiled: January 23, 2008Date of Patent: August 24, 2010Assignee: Mears Technologies, Inc.Inventor: Kalipatnam Vivek Rao
-
Patent number: 7718996Abstract: A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.Type: GrantFiled: February 21, 2007Date of Patent: May 18, 2010Assignee: Mears Technologies, Inc.Inventors: Ilija Dukovski, Robert John Stephenson, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Robert J. Mears, Xiangyang Huang, Marek Hytha
-
Patent number: 7700447Abstract: A method for making a semiconductor device which may include forming a first monocrystalline layer comprising a first material having a first lattice constant, a second monocrystalline layer including a second material having a second lattice constant different than the first lattice constant, and a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. More particularly, the superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. Furthermore, the at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.Type: GrantFiled: February 21, 2007Date of Patent: April 20, 2010Assignee: Mears Technologies, Inc.Inventors: Ilija Dukovski, Robert John Stephenson, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Robert J. Mears, Xiangyang Huang, Marek Hytha
-
Patent number: 7659539Abstract: A semiconductor device may include a semiconductor substrate and at least one non-volatile memory cell. The at least one memory cell may include spaced apart source and drain regions, and a superlattice channel including a plurality of stacked groups of layers on the semiconductor substrate between the source and drain regions. Each group of layers of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon, which may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A floating gate may be adjacent the superlattice channel, and a control gate may be adjacent the second gate insulating layer.Type: GrantFiled: May 5, 2006Date of Patent: February 9, 2010Assignee: Mears Technologies, Inc.Inventors: Scott A. Kreps, Kalipatnam Vivek Rao
-
Patent number: 7625767Abstract: A method is for making a spintronic device and may include forming at least one superlattice and at least one electrical contact coupled thereto, with the at least one superlattice including a plurality of groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion having a crystal lattice, at least one non-semiconductor monolayer constrained within the crystal lattice of adjacent base semiconductor portions, and a spintronic dopant. The spintronic dopant may be constrained within the crystal lattice of the base semiconductor portion by the at least one non-semiconductor monolayer. In some embodiments, the repeating structure of a superlattice may not be needed.Type: GrantFiled: March 16, 2007Date of Patent: December 1, 2009Assignee: Mears Technologies, Inc.Inventors: Xiangyang Huang, Samed Halilov, Jean Augustin Chan Sow Fook Yiptong, Ilija Dukovski, Marek Hytha, Robert J. Mears
-
Patent number: 7612366Abstract: A semiconductor device may include a stress layer and a strained superlattice layer above the stress layer and including a plurality of stacked groups of layers. More particularly, each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: July 13, 2006Date of Patent: November 3, 2009Assignee: MEARS Technologies, Inc.Inventors: Robert J. Mears, Scott A. Kreps
-
Patent number: 7598515Abstract: A semiconductor device may include a strained superlattice layer including a plurality of stacked groups of layers, and a stress layer above the strained superlattice layer. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: July 13, 2006Date of Patent: October 6, 2009Assignee: MEARS Technologies, Inc.Inventors: Robert J. Mears, Scott A. Kreps
-
Patent number: 7586116Abstract: A semiconductor device may include a substrate, an insulating layer adjacent the substrate, and a semiconductor layer adjacent a face of the insulating layer opposite the substrate. The device may further include source and drain regions on the semiconductor layer, a superlattice adjacent the semiconductor layer and extending between the source and drain regions to define a channel, and a gate overlying the superlattice. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: May 5, 2006Date of Patent: September 8, 2009Assignee: MEARS Technologies, Inc.Inventors: Scott A. Kreps, Kalipatnam Vivek Rao
-
Patent number: 7586165Abstract: A microelectromechanical system (MEMS) device may include a substrate and at least one movable member supported by the substrate. The at least one movable member may include a superlattice including a plurality of stacked groups of layers with each group of layers of the superlattice comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: May 31, 2006Date of Patent: September 8, 2009Assignee: MEARS Technologies, Inc.Inventor: Richard A. Blanchard
-
Patent number: 7535041Abstract: A method for making a semiconductor device which may include providing a substrate having a plurality of spaced apart superlattices therein, and forming source and drain regions in the substrate defining a channel region therebetween and with the plurality of spaced apart superlattices in the channel and/or drain regions. Each superlattice may include a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. Moreover, the at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: September 22, 2006Date of Patent: May 19, 2009Assignee: Mears Technologies, Inc.Inventor: Richard A. Blanchard
-
Patent number: 7531829Abstract: A semiconductor device may include a substrate and spaced apart source and drain regions defining a channel region therebetween in the substrate. The substrate may have a plurality of spaced apart superlattices in the channel and/or drain regions. Each superlattice may include a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: September 22, 2006Date of Patent: May 12, 2009Assignee: Mears Technologies, Inc.Inventor: Richard A. Blanchard