Abstract: A pressure sensor including a substrate having a first housing defining a gas-filled interior cavity arranged thereon. An elastic sealing element is attached to a free end of the first housing and generally covers an open end of the interior cavity for sealing the interior cavity with respect to an external environment. A portion of the elastic sealing element is configured to be moveable in response to a pressure acting thereon. A semiconductor die is arranged on the substrate and defines a pressure sensing diaphragm exposed to the gas occupying the interior cavity.
Type:
Grant
Filed:
December 8, 2016
Date of Patent:
February 4, 2020
Assignee:
MEAS SWITZERLAND S.A.R.L.
Inventors:
Thomas Arnold, Philippe Goguillot, Predrag Drljaca
Abstract: The invention relates to a device for supporting a MEMS component, especially a pressure sensor, having a substrate formed of a ceramic, a MEMS component on the substrate and walls forming a cavity for surrounding the MEMS component, in which the walls are formed from a machined ceramic cavity array.
Type:
Application
Filed:
October 12, 2017
Publication date:
August 15, 2019
Applicant:
MEAS Switzerland S.a.r.l.
Inventors:
Ismael Brunner, Thomas Arnold, Philippe Goguillot
Abstract: The present invention relates to a sensor arrangement, to a corresponding method of assembling such a sensor arrangement, and to a sensor system. The sensor arrangement comprises at least one transducer element for monitoring at least one measurand and generating an electrical output signal correlated with the at least one measurand; and a sensor substrate comprising the transducer element. The sensor substrate is mountable on a circuit carrier in a way that a media channel penetrating the circuit carrier allows access of the at least one measurand to the transducer element. The circuit carrier has an electrically conductive solderable first sealing pattern which surrounds the media channel at least partly and which is aligned with a solderable second sealing pattern arranged on the sensor substrate, so that a soldered sealing connection, which at least partly surrounds the media channel, is formed between the first sealing pattern and the second sealing pattern.
Abstract: A sensor for measuring, for example, the pressure of a gas or other fluid comprising a glass substrate having an aperture defined therethrough. A semiconductor die defining a diaphragm is anodically bonded to the glass substrate such that the diaphragm is exposed via the aperture. At least one electrically conductive element in electrical communication with the semiconductor die is arranged on a surface of the glass substrate.