Patents Assigned to Medtronic, In
  • Patent number: 11998750
    Abstract: An implantable medical device system receives a cardiac electrical signal produced by a patient's heart and comprising atrial P-waves and delivers a His bundle pacing pulse to the patient's heart via a His pacing electrode vector. The system determines a timing of a sensed atrial P-wave relative to the His bundle pacing pulse and determines a type of capture of the His bundle pacing pulse in response to the determined timing of the atrial P-wave.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: June 4, 2024
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Elizabeth A. Mattson, Eric R. Williams, Zhongping Yang, Shawn M. Campbell
  • Patent number: 11998363
    Abstract: A method of determining signal quality in a patient monitoring device includes acquiring one or more signals using the patient monitoring device. One or more signal quality metrics are determined based on the one or more acquired signals. A noise condition is detected based on the one or more signal quality metrics, and a determination is made whether the noise condition should be classified as intermittent or persistent. One or more actions are taken based on the classification of detected noise as intermittent or persistent.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: June 4, 2024
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Niranjan Chakravarthy, Scott Williams, Arthur K. Lai, Brion C. Finlay, Rodolphe Katra
  • Patent number: 11998327
    Abstract: The double layer capacitance of a working electrode of a sensor may be measured with minimal disruption to the sensor equilibrium by open circuiting the working electrode and measuring the voltage drift on a periodic, or as-needed, basis. The values of the double layer capacitance may be monitored over time to determine, e.g., sensor age and condition.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 4, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventor: Wayne A. Morgan
  • Patent number: 11998464
    Abstract: A stent in a radially compressed configuration includes a plurality of first outer crowns and a plurality of second outer crowns, each of the first outer crowns and the second outer crowns connected by a strut of a plurality of struts. The plurality of first outer crowns and the plurality of second outer crowns are disposed at a crown angle in the range of about 15 degrees to about 35 degrees, the crown angle being defined by a line extending through a midpoint of a crown of the plurality of first outer crowns or the plurality of second outer crowns through a center of radius of the crown with respect to a line that is parallel to a central longitudinal axis of the stent.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: June 4, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventors: Syed Askari, Richard Bliss
  • Patent number: 11999014
    Abstract: A system may include an emitting device and a controller. The emitting device may be adapted to emit a first laser beam and a second laser beam. The controller may include one or more processors and may be operably coupled to the emitting device to control emission of the first and second laser beams. The controller may be adapted to remove a portion of a workpiece to form an exposed surface of the workpiece with the first laser beam using the emitting device and to remove a portion of the exposed surface with the second laser beam using the emitting device.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: June 4, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xiangnan He, David A. Ruben, Mark E. Henschel, Chunho Kim, Yongqian Wang, Rodney D. Toles
  • Patent number: 11998330
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes, and associated architectures, as well as methods for making and using such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: June 4, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ashwin K. Rao, Qingling Yang, Ellis Garai, Daniel E. Pesantez
  • Patent number: 11998344
    Abstract: An implantable medical device is configured to determine a first atrial arrhythmia score from ventricular events sensed by a sensing circuit of an implantable medical device and determine a second atrial arrhythmia score from an intraventricular signal comprising atrial mechanical event signals attendant to atrial systole and produced by a sensor of the implantable medical device. An atrial arrhythmia is detected based on the first atrial arrhythmia score and the second atrial arrhythmia score.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: June 4, 2024
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Wade M. Demmer, Todd J. Sheldon, Vincent E. Splett
  • Patent number: 11998337
    Abstract: A monitoring system may include a processor and display system for displaying results from the monitoring. A user may be in a sterile field away from the processor and display system and selected input devices. A controller may be physically connected to the monitoring system from the sterile field to allow the user to control the monitoring system.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: June 4, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, Wenjeng Li, Kevin L. McFarlin, Anirudhan Narasimhan
  • Patent number: 11998440
    Abstract: A stent-graft prosthesis includes a graft material having a tubular construction, a frame coupled to the graft material, and a port or opening disposed between a proximal end and a distal end of the graft material. The port or opening is open during deployment of the stent-graft prosthesis to enable blood flow from a graft lumen within the graft material to exit the graft lumen, and the port or opening is blocked upon full deployment of the stent-graft prosthesis to prevent blood flow from within the graft lumen from exiting the graft lumen through the port or opening.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: June 4, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventors: Ian Benjamin Baranowski, Tessa Bronez, Keith D. Perkins
  • Patent number: 11998373
    Abstract: An imaging system is disclosed to include an elongate member supported by a plurality of wheels, where the elongate member is extendable in a horizontal axis such that a distance between two of the plurality of wheels is increased when the elongate member is extended in the horizontal axis; a trolley slidably secured to the elongate member, where the trolley includes a base portion and an upper portion. The base portion moves in the horizontal axis along the elongate member and the upper portion is rotatably mounted to the base portion, where the upper portion is configured to rotate at least 90 degrees relative to the base portion and elongate member.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: June 4, 2024
    Assignee: MEDTRONIC NAVIGATION, INC.
    Inventors: David A. Garlow, Elizabeth A. Levasseur
  • Patent number: 12002151
    Abstract: The disclosure is directed to rendering visual representations of VOAs by manipulating vertices of a three-dimensional (3-D) mesh structure. In one example, a processing circuitry of a computing device may receive a 3-D mesh structure having adjustable vertices. The processing circuitry may adjust the vertices to generate an adjusted shape of the 3-D mesh structure according to an intersection between activated tissue and non-activated tissue defined by one or more stimulation parameter values.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: June 4, 2024
    Assignee: Medtronic, Inc.
    Inventor: Lukas Valine
  • Patent number: 12003120
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: June 4, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11998677
    Abstract: A surgical fluid manager includes a pump releasably engageable to tubing and a user interface. The user interface is configured to enable finger-touch selection of a fluid flow rate through the tubing and configured to operate in at least one of a first mode or a second mode. In the first mode, the flow rate is controlled via direct selection of one of a plurality of selectable digital numeric values, while in the second mode the flow rate is controlled via user selection of one alphanumeric identifier within a scale of alphanumeric identifiers. Each respective alphanumeric identifier directly corresponds to just one instrument size within a scale of instrument sizes.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: June 4, 2024
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Gerould W. Norman, Charles F. Scott Carpenter, Michael L. Koltz, Stephen R. Viviano
  • Patent number: 11998748
    Abstract: In some examples of selecting a target therapy delivery site for treating a patient condition, a relatively high frequency electrical stimulation signal is delivered to at least two areas within a first region (e.g., an anterior nucleus of the thalamus) of a brain of a patient, and changes in brain activity (e.g., as indicated by bioelectrical brain signals) within a second region (e.g., a hippocampus) of the brain of the patient in response to the delivered stimulation are determined. The target therapy delivery site, an electrode combination, or both, may be selected based on the changes in brain activity.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: June 4, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Jonathon E. Giftakis, Timothy J. Denison, Paul H. Stypulkowski, Scott R. Stanslaski, Robert S. Raike, Mae Eng, David E. Linde, Thomas Adamski
  • Patent number: 11995431
    Abstract: Systems and methods for monitoring an electrosurgical unit (ESU), analyzing ESU system data, predicting future ESU maintenance, and updating the ESU using firmware over-the-air (FOTA).
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: May 28, 2024
    Assignee: Medtronic, Inc.
    Inventor: Snehashis Haldar
  • Patent number: 11992656
    Abstract: A method of operating an insulin infusion device involves: operating the infusion device in an automatic mode to automatically control delivery of insulin to a user, in accordance with a first target glucose setpoint value; receiving user status data that indicates sleeping status of the user, the user status data generated by a sleep detection system; and determining, from the user status data, that the user is sleeping while the insulin infusion device is operating in the automatic mode. In response to the determining, the method transitions from the first target glucose setpoint value to a second (different) target glucose setpoint value for use during the automatic mode, the transitioning occurring without user input. The method continues to operate the infusion device in the automatic mode to automatically control delivery of insulin to the user, in accordance with the second target glucose setpoint value.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: May 28, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Lavie Golenberg, Louis J. Lintereur, Benyamin Grosman, Di Wu, Maria Diana Miller
  • Patent number: 11997806
    Abstract: A sensor assembly for sensing a physiological characteristic includes a power source configured to deliver power to one or more components of an electrical subsystem upon deployment of the sensor assembly to a user. A power latch is configured to latch an output of a power control switch for delivery to one or more components of the electrical subsystem upon deployment of the sensor assembly to a user. The power control switch is configured to inhibit delivery of power to the electrical subsystem prior to deployment of the sensor assembly to a user and to deliver the latched output to one or more components of the electrical subsystem in response to deployment of the sensor assembly to a user.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: May 28, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jesse M. Hefner, Ellis Garai, Al L. Mclevish, Brian J. Ferry, Philip R. Glassel, Paul W. Chevalier, David Y. Choy
  • Patent number: 11992635
    Abstract: In one aspect, a medical balloon assembly includes a tip sleeve secured to the distal end portion of a balloon catheter that includes the distal neck of a balloon. The tip sleeve has at least an inner layer and an outer layer. The inner layer is formed from a bondable material that is directly bondable to the exterior of the distal neck portion of the balloon. The tip sleeve is bonded directly to the distal neck of the balloon. The outer layer is formed from a lubricious polymer. Such a medical balloon assembly is made by receiving the distal neck inside the proximal end portion of the tip sleeve and directly bonding the distal neck of the balloon to the inner layer of the tip sleeve.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: May 28, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventor: Risa Tom Egerter
  • Patent number: 11992675
    Abstract: An implantable medical device (IMD) including an elongated housing and a tine housing configured to attach to the elongated housing. The tine housing may support an extending plurality of tines and a distal-most electrode. An inner chamber is bounded at least in part by the elongated housing and the tine housing with an adhesive fill port in fluid communication with the inner chamber. A method of assembling the IMD includes forming the inner chamber and substantially filling the inner chamber with an adhesive through the adhesive fill port. The method may include curing the filling adhesive.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 28, 2024
    Assignee: Medtronic, Inc.
    Inventors: Thomas A. Anderson, Douglas D. Nippoldt, Benjamin Cook, Carlos Taboada
  • Patent number: D1029269
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: May 28, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Matthew T. Vanderpool, Michael R. Klardie, Kris A. Peterson