Patents Assigned to Medtronic, In
  • Publication number: 20130331864
    Abstract: A delivery system for delivery of a radially expandable device to an implantation site in a patient, the delivery system including an elongated tubular member comprising a distal tip and an outer surface, first and second balloon portions spaced proximally from each other and the distal tip along a length of the tubular member, an annular space between the first and second balloon portions, a plurality of clip deployment tubes extendably moveable relative to the outer surface of the tubular member, and a plurality of clips, wherein each clip is moveable within a length of one of the clip deployment tubes between a retracted position and a deployed position.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: Medtronic, Inc.
    Inventors: Damian Jelich, Ana Menk, Jason Quill, Gilbert Tang
  • Publication number: 20130331676
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: February 27, 2013
    Publication date: December 12, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Wayne A. Morgan, Paris Chen, Rajiv Shah
  • Publication number: 20130331833
    Abstract: Devices, systems and methods for cutting and sealing of tissue such as bone and soft tissue. Devices, systems and methods include delivery of energy including bipolar radiofrequency energy for sealing tissue which may be concurrent with delivery of fluid to a targeted tissue site. Devices include debridement devices which may include a fluid source. Devices include inner and outer shafts coaxially maintained and having cutters for debridement of tissue. An inner shaft may include electrodes apart from the cutter to minimize trauma to tissue during sealing or hemostasis. Devices may include a single, thin liner or sheath for electrically isolating the inner and outer shafts.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 12, 2013
    Applicant: Medtronic Advanced Energy LLC
    Inventor: Eliot F. Bloom
  • Publication number: 20130331831
    Abstract: Devices, systems and methods are disclosed for the ablation of tissue. Embodiments include an ablation catheter which has an array of ablation elements attached to a deployable carrier assembly. The carrier assembly can be constrained within the lumen of a catheter, and deployed to take on an expanded condition.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 12, 2013
    Applicant: MEDTRONIC ABLATION FRONTIERS LLC
    Inventors: Randell L. WERNETH, Marshall L. SHERMAN, Thomas M. CASTELLANO, J. Christopher FLAHERTY, Gary Edward CURRIE
  • Patent number: 8606355
    Abstract: An implantable medical system is disclosed that is configured to detect a laryngeal activation response of a patient to an electrical stimulation signal. Detection of the laryngeal activation can be used to control vagal stimulation therapy to a patient.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 10, 2013
    Assignee: Medtronic, Inc.
    Inventor: Paul G. Krause
  • Patent number: 8603033
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, other internal components in the housing, and a keypad external to the housing. The device includes a number of features and elements that enhance its operation, manufacturability, reliability, and user-friendliness. These features and elements include a shock absorbing element for a battery of the device, a keypad actuator layer that overlies a keypad assembly and forms a water resistant seal with the housing, and an offset element for a piezoelectric speaker that is located inside the housing.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Afshin Bazargan, Pablo Vazquez
  • Patent number: 8602992
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 8603027
    Abstract: Apparatus are provided for motor control systems and related medical devices. In one embodiment, a control system includes a motor having a rotor, a modulation module coupled to the motor, and a control module coupled to the modulation module. The modulation module generates a modulated voltage that is applied to the motor and rotates the rotor to deliver fluid via a fluid path. The control module adjusts a duty cycle of the modulated voltage to achieve a commanded rotation of the rotor and detects an occlusion condition in the fluid path based on the duty cycle.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventor: Jacques L. Favreau
  • Patent number: 8603026
    Abstract: Apparatus are provided for motor control systems and related medical devices. In one embodiment, a control system includes a motor having a rotor, a sensor to obtain a measured displacement that is influenced by rotation of the rotor, and a control module coupled to the sensor. The control module adjusts a duty cycle for a modulated voltage applied to the motor in response to a difference between an expected displacement and the measured displacement. The expected displacement is influenced by or otherwise corresponds to a commanded rotation of the rotor.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventor: Jacques L. Favreau
  • Patent number: 8603159
    Abstract: A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: December 10, 2013
    Assignee: Medtronic Corevalve, LLC
    Inventors: Jacques Seguin, Georg Bortlein
  • Patent number: 8606369
    Abstract: A catheter used to deliver a medical electrical lead to a right atrium of a heart in close proximity to a His bundle. The catheter is adapted such that the distal tip confronts the His bundle generally perpendicularly. The catheter includes a proximal portion and a generally hook-shaped distal portion. The distal portion may include curves that direct the distal tip at an angle of over 180 degrees from the direction of the proximal portion.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 10, 2013
    Assignee: Medtronic, Inc.
    Inventors: Terrell M. Williams, Raymond Yee
  • Patent number: 8603032
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, other internal components in the housing, and a keypad external to the housing. The device includes a number of features and elements that enhance its operation, manufacturability, reliability, and user-friendliness. These features and elements include a shock absorbing element for a battery of the device, a keypad actuator layer that overlies a keypad assembly and forms a water resistant seal with the housing, and an offset element for a piezoelectric speaker that is located inside the housing.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Paul S. Cheney, II, Afshin Bazargan, Andrew B. Nguyen, David Law
  • Patent number: 8603161
    Abstract: Devices for attaching a first mass and a second mass and methods of making and using the same are disclosed. The devices can be made from an resilient, elastic or deformable materials. The devices can be used to attach a heart valve ring to a biological annulus. The devices can also be used for wound closure or a variety of other procedures such as anchoring a prosthesis to surrounding tissue or another prosthesis, tissue repair, such as in the closure of congenital defects such as septal heart defects, tissue or vessel anastomosis, fixation of tissue with or without a reinforcing mesh for hernia repair, orthopedic anchoring such as in bone fusing or tendon or muscle repair, ophthalmic indications, laparoscopic or endoscopic tissue repair or placement of prostheses, or use by robotic devices for procedures such as those above performed remotely.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: December 10, 2013
    Assignee: Medtronic, Inc.
    Inventors: Michael J. Drews, Donnell W. Gurskis, Steven R. Bacich
  • Patent number: 8603038
    Abstract: Anchors for securing a therapy delivery device such as a therapy catheter relative to a burr hole, and systems and methods for using the same. Anchors in accordance with embodiments of the present disclosure may include various apparatus for securing the therapy catheter relative to the burr hole. Exemplary anchors may include one or more of a connector for selectively connecting the therapy catheter to an external therapy source, and a shearing mechanism for shearing the therapy catheter to the desired length.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: December 10, 2013
    Assignee: Medtronic, Inc.
    Inventor: Brian D. Nelson
  • Publication number: 20130325094
    Abstract: A medical electrical lead having an elongated lead body and a fixation helix extending along a generally helical axis, mounted around the outer circumference of the lead body. The fixation helix has a free end spaced from and extending from the lead body for less than the circumference of the lead body. The lead body includes an additional component which provides a rotation stop extending from the outer circumference of the lead body and provides stop surface generally perpendicular to the axis of the helix.
    Type: Application
    Filed: March 11, 2013
    Publication date: December 5, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: John L Sommer, Gareth Morgan
  • Publication number: 20130324941
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 5, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Medtronic MiniMed, Inc.
  • Publication number: 20130324838
    Abstract: A medical lead is configured to be implanted into a patient's body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section electrically coupled to the first section and configured to be capacitively coupled to the patient's body.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 5, 2013
    Applicant: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Thomas Barry Hoegh, James M. Olsen, Stephen L. Bolea, Gregory A. Hrdlicka
  • Publication number: 20130319577
    Abstract: Various embodiments of the present invention are directed to transferring fluidic media from a vial to a reservoir. In various embodiments, fluidic media may be transferred from the vial to the reservoir by moving a housing portion to move a plunger head located in the reservoir to draw fluidic media from the vial to the reservoir. In other embodiments, fluidic media may be transferred from the vial to the reservoir while the reservoir is held by a holding unit and vibrated by a vibrator to remove air from the fluidic media. In some embodiments, fluidic media may be transferred from the vial to the reservoir by moving a handle operatively connected to a bias member for assisting with the transfer of fluidic media. In other embodiments, the transfer of fluidic media may be assisted by a bias member and a needle connecting atmosphere and the vial.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Julian D. Kavazov
  • Publication number: 20130325086
    Abstract: Hermetically sealed assemblies, for example, that include IC chips, are configured for incorporation within a connector terminal of an implantable medical electrical lead, preferably within a contact member of the terminal. An assembly may include two feedthrough subassemblies, welded to either end of the contact member, to form an hermetic capsule, in which an IC chip is enclosed, and a tubular member, which allows a lumen to extend therethrough, along a length of the terminal. A multi-electrode lead may include multiplexer circuitry, preferably a switch matrix element and a communications, control and power supply element that are electrically coupled to the contact member and to another contact member of the terminal. Each pair of switch matrix switches allows for any two of the electrodes to be selected, in order to deliver a stimulation vector, via stimulation pulses from a device/pulse generator, to which the connector terminal is connected.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: Medtronic, Inc.
    Inventors: John Louis Sommer, Joseph Michael D'Sa, Joyce K. Yamamoto, Brad C. Tischendorf, James D. Reinke, Andrew J. Thom, Thomas P. Miltich, William John Taylor, Kenneth C. Gardeski, Larry Earl Tyler, Jeffrey O. York, Gordon O. Munns
  • Publication number: 20130319576
    Abstract: Various embodiments of the present invention are directed to transferring fluidic media from a vial to a reservoir. In various embodiments, fluidic media may be transferred from the vial to the reservoir by moving a housing portion to move a plunger head located in the reservoir to draw fluidic media from the vial to the reservoir. In other embodiments, fluidic media may be transferred from the vial to the reservoir while the reservoir is held by a holding unit and vibrated by a vibrator to remove air from the fluidic media. In some embodiments, fluidic media may be transferred from the vial to the reservoir by moving a handle operatively connected to a bias member for assisting with the transfer of fluidic media. In other embodiments, the transfer of fluidic media may be assisted by a bias member and a needle connecting atmosphere and the vial.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Julian D. Kavazov