Patents Assigned to Medtronic, In
  • Publication number: 20120041510
    Abstract: The disclosure describes a therapeutic sphincter control system with a fluid tube pressure sensor. The system senses sphincter pressure and sends the information to a stimulator that is capable of stimulation therapy to control sphincter contractility, thus reducing unwanted urinary incontinence. Measuring sphincter pressure is accomplished through the use of a fluid-filled tube placed through the sphincter and attached to a module implanted within the bladder. Pressure within the tube is transduced to generate an electrical signal that is sent wirelessly to an implanted stimulator connected to a lead positioned near pelvic floor nerves. An external device may be used to wirelessly send information to the implanted stimulator and inhibit stimulation in order for the patient to empty the bladder. Pressure information and stimulation information may be recorded and reviewed for continued patient monitoring. In addition, the system may only include the pressure sensor to monitor patient pressure information.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc.
    Inventors: Martin T. Gerber, Keith A. Miesel
  • Publication number: 20120040548
    Abstract: A connector (500) for operably coupling a medical lead to an implantable medical device includes first and second pivotably coupled elongate members (510, 520). Each of the first and second elongate members has (i) a proximal end portion (512, 522), and (ii) a distal end portion (514, 524) for engaging the lead. The lead has a proximal end portion having a shoulder. The first and second elongate members are pivotably coupled such that the distal end portions of the first and second elongate members are moveable to allow insertion of the lead proximally past the distal end portions of the elongate members and to allow the distal end portions to engage the lead distal the shoulder.
    Type: Application
    Filed: April 9, 2010
    Publication date: February 16, 2012
    Applicant: MEDTRONIC, INC.
    Inventor: Gary W. King
  • Publication number: 20120038477
    Abstract: Proper insertion of medical leads into medical devices is detected at the time the lead is being inserted. An external device initiates impedance testing by the medical device that is receiving the lead prior to the insertion of the lead being completed. The medical device reports back the results of the impedance testing so that the external device can determine whether the lead is properly inserted at the time of lead insertion and can provide an output to a user to indicate whether the lead insertion is proper. The medical device may poll only a last connector expected to be connected before responding, test other connector combinations before or after responding, and so forth.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, James A. Zimmerman
  • Publication number: 20120041501
    Abstract: An implantable medical device operates with an algorithm that promotes intrinsic conduction and reduces ventricular pacing. The IMD monitors the occurrence of necessary ventricular pacing and takes certain actions based upon whether this occurrence has been relatively high or relatively low. When noise is detected, asynchronous pacing is provided when the occurrence is relatively high and is not provided when relatively low. When atrial threshold testing is performed, the incidence will determine which methodology is utilized.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc.
    Inventor: Robert A. Betzold
  • Publication number: 20120041370
    Abstract: An improved pump, reservoir and reservoir piston are provided for controlled delivery of fluids. A motor is operably coupled to a drive member, such as a drive screw, which is adapted to advance a plunger slide in response to operation of the motor. The plunger slide is removably coupled to the piston. A method, system, and an article of manufacture for automatically detecting an occlusion in a medication infusion pump is provided. The electrical current to an infusion pump is measured. Based on a series of measurements of one or more variables, the infusion pump detects whether there is an occlusion in the system.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 16, 2012
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: SHELDON B. MOBERG, Ian B. Hanson, Cary D. Talbot
  • Publication number: 20120036720
    Abstract: A slitter for slitting a guide catheter is assembled from a handle, a blade assembly coupled to the handle, and a holding mechanism coupled to the handle. The blade assembly includes a shroud for receiving an elongated body of a medical device and a slitting blade having an exposed cutting edge to slit the guide catheter.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc.
    Inventors: Ron A. Drake, Stanten C. Spear, Johnson E. Goode, Beth C. Bullemer, Les Stener, Gary R. Fiedler, Kendra Yasger
  • Publication number: 20120041415
    Abstract: Systems and methods for the delivery and monitoring of a medication, such as insulin, to a recipient are provided. An exemplary feature-rich system comprises an infusion pump with a control system for controlling medication delivery by the infusion pump and a bolus estimator for estimating an appropriate amount of medication for delivery by the control system with the infusion pump. Estimating the appropriate amount of medication for delivery is based upon one or more settings which each vary according to a setting profile. In other embodiments, the control system comprises a suspend function for temporarily suspending medication delivery by the infusion pump, an alarm profile function for programming a variable alarm volume of the alarm and a simplified menu for controlling the dual wave bolus delivery function.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 16, 2012
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Mark C. Estes, Leif N. Bowman, DeNetta Malave, Cary Dean Talbot
  • Publication number: 20120041414
    Abstract: Systems and methods for the delivery and monitoring of a medication, such as insulin, to a recipient are provided. An exemplary feature-rich system comprises an infusion pump with a control system for controlling medication delivery by the infusion pump and a bolus estimator for estimating an appropriate amount of medication for delivery by the control system with the infusion pump. Estimating the appropriate amount of medication for delivery is based upon one or more settings which each vary according to a setting profile. In other embodiments, the control system comprises a suspend function for temporarily suspending medication delivery by the infusion pump, an alarm profile function for programming a variable alarm volume of the alarm and a simplified menu for controlling the dual wave bolus delivery function.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 16, 2012
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Mark C. Estes, Leif N. Bowman, DeNetta Malave, Cary Dean Talbot
  • Publication number: 20120041547
    Abstract: Valve delivery catheter assemblies including components that limit trauma to the expanded prosthetic valve and body channels as the distal tip of the catheter is withdrawn through the expanded valve and thereafter from the body. Catheter assemblies according to the present invention can include a handle assembly, an introducer sheath, and a distal tip assembly. The handle assembly can include a fixed main handle and two or more rotating handles that allow a user to control the distal tip assembly of the catheter. A safety button can be included on the handle assembly to allow for precise and consistent positioning of the prosthetic valve in the body. A valve retaining mechanism can be included to assist in retaining the prosthetic valve prior to deployment.
    Type: Application
    Filed: January 28, 2011
    Publication date: February 16, 2012
    Applicant: Medtronic Vascular, Inc.
    Inventors: Niall DUFFY, John Gallagher, Kate Corish
  • Publication number: 20120041528
    Abstract: A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc
    Inventors: Bruce R. Mehdizadeh, Brian T. Stolz, Michael R. Klardie, Michael J. Kern, James M. Olsen, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Patent number: 8116876
    Abstract: A method for selectively interacting with electrically excitable tissue of a patient is provided. In one configuration, an implantable pulse generator with a number of outputs and an array of electrodes with a number of electrodes being greater than the number of outputs may be implanted in a patient. An extension unit may be implanted between the implantable pulse generator and array. The extension unit acts to electrically couple the inputs of implantable pulse generator with the greater number of electrodes in the array so that the output sources are coupled to a portion of the electrodes.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: February 14, 2012
    Assignee: Medtronic, Inc.
    Inventor: Paul H. Stypulkowski
  • Patent number: 8116880
    Abstract: A medical lead for electrical stimulation or sensing. The medical lead has a generally flat paddle on the distal end of the lead body. An electrode array is provided on the paddle, with the electrode array displaced along the length of the paddle toward the distal end. Advantages include allowing the electrode array may be advanced into position for electrical stimulation or sensing with the flat paddle extending through connective tissue, such as the ligamentum flavum, thus facilitating repositioning, withdrawal or explanting the medical lead, as well as using the flat features of the paddle to anchor the lead to the connective tissue.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: February 14, 2012
    Assignee: Medtronic, Inc.
    Inventor: Thomas E. Cross, Jr.
  • Patent number: 8114269
    Abstract: According to an embodiment of the invention, a method of determining hydration of a sensor having a plurality of electrodes is disclosed. In particular embodiments, the method couples a sensor electronics device to the sensor and measures the open circuit potential between at least two of the plurality of electrodes. Then, the open circuit potential measurement is compared to a predetermined value. In some embodiments, the plurality of electrodes includes a working electrode, a reference electrode, and a counter electrode. In still further embodiments, the open circuit potential between the working electrode and the reference electrode is measured. In other embodiments, the open circuit potential between the working electrode and the counter electrode is measured. In still other embodiments, the open circuit potential between the counter electrode and the reference electrode is measured.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 14, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Kenneth W. Cooper, David Y. Choy, Rajiv Shah, Gopikrishnan Soundararajan, Ratnakar Vejella
  • Patent number: 8114268
    Abstract: A method and system that enables a user to maintain a sensor in real time. The present invention involves performing a diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure to measure sensor impedance value in order to determine if the sensor is operating at an optimal level. If the sensor is not operating at an optimal level, the present invention may further involve performing a sensor remedial action. The sensor remedial action involves reversing the DC voltage being applied between the working electrode and the reference electrode. The reversed DC voltage may be coupled with an AC voltage to extend its reach.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: February 14, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Lu Wang, Rajiv Shah
  • Patent number: 8116850
    Abstract: An insertion guide device guides an instrument toward a target location in a subject. The insertion guide device includes a base portion securable to the subject and an insertion guide portion defining an insertion axis. The insertion guide portion guides the instrument along the insertion axis, and the insertion guide portion is moveably supported by the base portion for movement of the insertion axis about at least two axes. Moreover, the insertion guide device includes a locking device that selectively fixes the insertion guide portion relative to the base portion. The locking device selectively fixes the insertion axis relative to the at least two axes substantially concurrently.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: February 14, 2012
    Assignee: Medtronic, Inc.
    Inventor: Matthew S. Solar
  • Publication number: 20120035696
    Abstract: A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. Barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: Michael J. Kern, James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham, Brian T. Stolz
  • Publication number: 20120035423
    Abstract: Embodiments of the invention include instruments and methods for providing surgical access to a surgical site. Some embodiments include a flexible arm that adjustably holds a retractor blade to enable access to the surgical site.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicants: Warsaw Orthopedic, Inc., MEDTRONIC
    Inventors: Kelli N. SEBASTIAN, Dimitri K. PROTOPSALTIS
  • Publication number: 20120033706
    Abstract: An adapter slip configured to be seated in a fluid port, the adapter slip including a lumen, an exterior wall, a shoulder, and a sleeve. The lumen extending along a length of a longitudinal axis, the lumen configured to receive a temperature probe. The exterior wall including a proximal end portion and a distal end portion, wherein the proximal end portion includes a tapered portion tapered at an acute angle with respect to the longitudinal axis. The shoulder extending outward from the exterior wall distal to the tapered portion configured to engage with a distal end of the fluid port. The sleeve configured extend within the lumen and project a predetermined distance beyond the proximal end portion of the exterior wall, the sleeve including a sleeve lumen and a closed proximal end, the sleeve lumen configured to receive at least a temperature sensor of the temperature probe.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Applicant: MEDTRONIC, INC.
    Inventor: Mark Wendler
  • Publication number: 20120035616
    Abstract: An implantable medical lead has a torsional stiffness and is rotationally coupled to a stylet. Applying rotation directly to the lead in turn causes rotation of the stylet. Where the stylet has a bent tip for purposes of steering the lead, the rotation applied to the lead rotates the bent tip so that the lead can be steered by rotating the lead rather than rotating a hub of the stylet. The rotational coupling may be achieved through one or more features provided for the lead and/or the stylet, such as a feature within a lumen of the lead that mates to a feature along the stylet or a feature of the stylet hub that engages the proximal end of the lead. The torsional stiffness of the lead may be provided by adding a feature within the lead body, such as a braided metal wire or an overlapping foil.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Boudhus, Mark J. Conway, Timothy R. Abraham
  • Publication number: 20120035547
    Abstract: Systems and methods for the delivery and monitoring of a medication, such as insulin, to a recipient are provided. An exemplary feature-rich system comprises an infusion pump with a control system for controlling medication delivery by the infusion pump and a bolus estimator for estimating an appropriate amount of medication for delivery by the control system with the infusion pump. Estimating the appropriate amount of medication for delivery is based upon one or more settings which each vary according to a setting profile. In other embodiments, the control system comprises a suspend function for temporarily suspending medication delivery by the infusion pump, an alarm profile function for programming a variable alarm volume of the alarm and a simplified menu for controlling the dual wave bolus delivery function.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Mark C. Estes, Leif N. Bowman, DeNetta Malave, Cary Dean Talbot