Patents Assigned to Medtronic, Inc.
  • Patent number: 11027135
    Abstract: Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 8, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Subham Ghosh, Jeffrey M. Gillberg, Robert W. Stadler
  • Patent number: 11027137
    Abstract: The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventors: Richard M. T. Lu, Subham Ghosh, Robert W. Stadler
  • Patent number: 11031345
    Abstract: Various embodiments of an integrated circuit package and a method of forming such package are disclosed. The package includes a substrate having a core layer disposed between a first dielectric layer and a second dielectric layer, a die disposed in a cavity of the core layer, and an encapsulant disposed in the cavity between the die and a sidewall of the cavity. The package further includes a first patterned conductive layer disposed within the first dielectric layer, a device disposed on an outer surface of the first dielectric layer such that the first patterned conductive layer is between the device and the core layer, a second patterned conductive layer disposed within the second dielectric layer, and a conductive pad disposed on an outer surface of the second dielectric layer such that the second patterned conductive layer is between the conductive pad and the core layer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventors: Chunho Kim, Mark R. Boone, Randolph E. Crutchfield
  • Patent number: 11027124
    Abstract: A tool operable with a catheter in an interventional medical system retrieves a medical device from an implant site, wherein the device includes an attachment feature that forms an annular recess to be engaged by a lasso of the tool for snaring the device, and a distal-most sidewall of the catheter defines a receptacle into which the snared device is retrieved. A guide of the tool includes a sidewall defining a lumen in which the lasso extends for deployment out from a distal opening thereof, to snare and retrieve the implanted device. The sidewall establishes a radial offset between the guide lumen distal opening and the distal-most sidewall of the catheter, when the guide lumen distal opening and a distal opening of the receptacle are located in close proximity to one another, which radial offset is greater than a length of the annular recess formed by the device attachment feature.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: June 8, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Ronald A Drake, Keith D Anderson, Kenneth C Gardeski, Dina L Williams
  • Patent number: 11027132
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) system receives a cardiac electrical signal by an electrical sensing circuit via an extra-cardiovascular sensing electrode vector and senses cardiac events from the cardiac electrical signal. The ICD system detects tachycardia from the cardiac electrical signal and determines a tachycardia cycle length from the cardiac electrical signal. The ICD system determines an ATP interval based on the tachycardia cycle length and sets an extended ATP interval that is longer than the ATP interval. The ICD delivers ATP pulses to a patient's heart via an extra-cardiovascular pacing electrode vector different than the sensing electrode vector. The ATP pulses include a leading ATP pulse delivered at the extended ATP interval after a cardiac event is sensed from the cardiac electrical signal and a second ATP pulse delivered at the ATP interval following the leading ATP pulse.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventor: Troy E. Jackson
  • Patent number: 11027125
    Abstract: A fixation mechanism of an implantable medical device is formed by a plurality of tines fixedly mounted around a perimeter of a distal end of the device. Each tine may be said to include a first segment fixedly attached to the device, a second segment extending from the first segment, and a third segment, to which the second segment extends. When the device is loaded in a lumen of a delivery tool and a rounded free distal end of each tine engages a sidewall that defines the lumen, to hold the tines in a spring-loaded condition, the first segment of each tine, which has a spring-biased pre-formed curvature, becomes relatively straightened, and the third segment of each tine, which is terminated by the free distal end, extends away from the axis of the device at an acute angle in a range from about 45 degrees to about 75 degrees.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 8, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Xin Chen, Michael D. Eggen, Vladimir Grubac, Brian P. Colin, Wei Gan, Thomas A. Anderson, Kathryn Hilpisch
  • Patent number: 11026786
    Abstract: A prosthetic heart valve having identifiers for aiding in radiographic positioning is described.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventors: Yossi Tuval, Raphael Benary
  • Publication number: 20210161665
    Abstract: An annuloplasty ring for attachment to an annulus of a tricuspid valve comprises an elongate tube of suturable material comprising a central segment and first and second end segments. An arcuate stiffener is received in the central segment of the tube and extends the length thereof. The arcuate stiffener is circumferentially confined within the central segment to prevent circumferential movement of the stiffener relative to the tube. The first and second end segments of the tube lack a stiffener and are axially deformable.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 3, 2021
    Applicants: Medtronic ATS Medical, Inc., Medtronic, Inc.
    Inventors: David H. Adams, John T.M. Wright
  • Patent number: 11020038
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Patent number: 11020587
    Abstract: A distal electrode of an electrode assembly, for example, employed by an implantable medical electrical lead device, extends distally from a distal terminal end of a sleeve of the assembly; and the sleeve, which defines a longitudinal axis of the assembly, includes a plurality of channels that provide fluid communication between a steroid eluting component, which is seated in an external groove of the sleeve, and an area distal to the distal terminal end of the sleeve. Floors of some or all of the sleeve channels may angle toward the longitudinal axis of the assembly, being closer to the axis at the distal terminal end of the sleeve. The assembly may further include a proximal electrode secured to a proximal end of the sleeve, wherein the proximal electrode may be mounted around an outer surface of the sleeve or coupled to the sleeve by means of a coupling component.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: William J. Clemens, Linda L. Franke, Mark T. Marshall, Timothy M. Ramos, Vania Lee
  • Patent number: 11020223
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached, includes a shaft assembly including a distal end and a coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve. The system includes a sheath assembly defining a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The coupling structure is configured to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve based on longitudinal movement of the distal end of the shaft assembly.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: Matthew Rust, Savage Padraig, Gianfranco Pellegrini, Finn Rinne
  • Publication number: 20210153862
    Abstract: An anchorage device includes a substrate extending along a longitudinal axis between a first end having a first bonding area and an opposite second end having a second bonding area. The substrate has a third bonding area between the first and second bonding areas. Kits, systems and methods are disclosed.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Applicant: MEDTRONIC INC
    Inventors: SATISH PULAPURA, FATIMA BUEVICH, ARCHANA RAJARAM, JONATHAN M. MAHONEY, DAN THANH LE
  • Patent number: 11013436
    Abstract: In some examples, a medical system includes a medical device. The medical device may include a housing configured to be implanted in a target site of a patient, a light emitter configured to emit a signal configured to cause a fluorescent marker to emit a fluoresced signal into the target site, and a light detector that may be configured to detect the fluoresced signal. The medical system may include processing circuitry configured to determine a characteristic of the fluorescent marker based on the emitted signal and the fluoresced signal. The characteristic of the fluorescent marker may be indicative of a presence of a compound in the patient, and the processing circuitry may be configured to track the presence of the compound of the patient based on the characteristic of the fluorescent marker.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Burnes, James K. Carney, Jonathan L. Kuhn, Mark J. Phelps, Jesper Svenning Kristensen, Rodolphe Katra
  • Patent number: 11013843
    Abstract: The invention relates to a testing system and related methods for detecting peritonitis or infection in peritoneal dialysate removed from a patient. The testing system can include a fluid sensor apparatus in a fluid line of a peritoneal dialysis cycler through which spent peritoneal dialysate can be pumped. The fluid sensor apparatus can detect one or more markers associated with peritonitis or infection.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 11013893
    Abstract: Anchors for securing a medical device relative to a body portal, wherein the anchors may accommodate most any implantation trajectory through the portal. Such anchors may further secure the device along any such trajectory without imparting undesirable biasing forces that may shift the device from its intended implanted location. In some embodiments, the anchor is configured as a burr hole anchor including a spherical member contained in a socket of the anchor such that orientation of the spherical member is permitted about three mutually perpendicular axes.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: Brian D. Nelson, Jeffrey P. Bodner
  • Patent number: 11013915
    Abstract: Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, Phillip C. Falkner, Michael T. Hegland, Brian T. Stolz, Patrick D. Wells
  • Patent number: 11013925
    Abstract: A medical device and medical device system for controlling delivery of therapeutic stimulation pulses that includes a sensing device to sense a cardiac signal and emit a trigger signal in response to the sensed cardiac signal, a therapy delivery device to receive the trigger signal and deliver therapy to the patient in response to the emitted trigger signal, and a processor positioned within the sensing device, the processor configured to determine whether the sensed cardiac signal exceeds a possible P-wave threshold, compare a portion of the sensed cardiac signal to a P-wave template having a sensing window having a length less than a width of the P-wave, confirm an occurrence of a P-wave signal in response to the comparing, emit the trigger signal in response to the occurrence of a P-wave signal being confirmed, and inhibit delivery of the emitting signal in response to the occurrence of a P-wave signal not being confirmed.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Juan Du, Saul E. Greenhut, Michael T. Hemming
  • Patent number: 11013916
    Abstract: Implantable medical leads include a shield that is guarded at a termination by having a first portion and a second portion of the shield, where the first portion is between a termination of the shield at the second portion and an inner insulation layer that surrounds the filars. The first portion may reduce the coupling of RF energy from the termination of the shield at the second portion to the filars. The first and second portions may be part of a continuous shield, where the first and second portions are separated by an inversion of the shield. The first and second portions may instead be separate pieces. The first portion may be noninverted and reside between the termination at the second portion and the inner layers, or the first portion may be inverted to create first and second sub-portions. The shield termination at the second portion is between the first and second sub-portions.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Mark J. Conroy, Wanzhan Liu, Gary W. Salminen
  • Patent number: 11013929
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: James J. St. Martin, George C. Rosar, John D. Wahlstrand
  • Patent number: 11007369
    Abstract: An implantable medical device system receives a cardiac electrical signal produced by a patient's heart and comprising atrial P-waves and delivers a His bundle pacing pulse to the patient's heart via a His pacing electrode vector. The system determines a timing of a sensed atrial P-wave relative to the His bundle pacing pulse and determines a type of capture of the His bundle pacing pulse in response to the determined timing of the atrial P-wave.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: May 18, 2021
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Elizabeth A. Mattson, Eric R. Williams