Patents Assigned to Medtronic, Inc.
  • Patent number: 10315031
    Abstract: In one example, a method including generating electrical stimulation therapy with a frequency of approximately 500 hertz or greater, and controlling delivery of the electrical stimulation therapy to a patient via a medical device between at least one of contractions of a bladder or contractions of a bowel of a patient, wherein the electrical stimulation therapy comprises electrical stimulation therapy configured to inhibit contraction of the bladder when the electrical stimulation is delivered between the contractions of the bladder, wherein the electrical stimulation therapy comprises electrical stimulation therapy configured to inhibit contraction of the bowel when the electrical stimulation is delivered between the contractions of the bowel, and wherein at least one of the generating and controlling is performed via one or more processors.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 11, 2019
    Assignee: Medtronic, Inc.
    Inventors: Thaddeus S. Brink, Xin Su, Dwight E. Nelson
  • Patent number: 10315028
    Abstract: A medical electrical lead and a method of its use. The lead has an elongated lead body having an outer circumference and provided with an electrode. A push tube is mounted circumferentially around the lead body and the lead body is longitudinally movable with respect thereto. A fixation helix is mounted to the push tube, extending along a generally helical axis around the outer circumference of the lead body. The lead may be employed by advancing the lead to a desired location for the fixation helix and then rotating the push tube to secure the helix to tissue. The lead body may then be moved longitudinally with respect to the push tube to place the electrode in a desirable location.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: June 11, 2019
    Assignee: Medtronic, Inc.
    Inventors: John L Sommer, Linda L Franke
  • Patent number: 10315037
    Abstract: Devices that communicate using wireless proximal communications measure pulse width to find distortion in the received signal. The distortion may be due to the devices being too close to one another for a transmission power level currently being used which causes ringing of a receiving coil. The distortion may be used to find a correction that the receiving device may use to correct for the distortion in the received pulse train when decoding the pulse train. The distortion may be used to adjust a transmission power level of the receiving device and/or to send an instruction to the transmitting device to adjust the power transmission power level of the transmitting device. The distortion may be used for other purposes including determining a device depth and/or location for an implanted device, such as an implantable medical device within a body of a patient.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: June 11, 2019
    Assignee: MEDTRONIC, INC.
    Inventor: Warren Ball
  • Patent number: 10314614
    Abstract: An introducer for a medical lead, the introducer having an arcuate component for creating an arcuate path in a patient. When used to percutaneously implant a medical device such as a medical lead with electrodes, the implanted lead has an arcuate configuration. The implanted lead can be used to at least partially encircle or bracket a region of chronic pain and provide therapeutic electrical signals to the region.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: June 11, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Carl D. Wahlstrand, John E. Kast, Gabriela C. Molnar, Glenna L. Case, Lisa M. Johanek, Phillip C. Falkner
  • Patent number: 10314951
    Abstract: A kit includes a mesh substrate and a polymer that is fixed to the mesh substrate. The polymer includes an active agent that is configured to elute over time. The kit further includes a hemostatic agent. The hemostatic agent is separate from the mesh substrate and the polymer. Systems and methods are disclosed.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 11, 2019
    Assignee: Medtronic, Inc.
    Inventors: Xiangji Chen, Satish Pulapura, Fatima Buevich
  • Patent number: 10307599
    Abstract: Systems, apparatus, methods and computer-readable storage media facilitating management of operation of an implantable medical device (“IMD”) using a number of communication modes are provided. An IMD is configured to operate in a disabled mode wherein radio frequency (RF) telemetry communication is disabled, or operate in a first advertising mode using the RF telemetry communication. The IMD receives a clinician session request from a clinician device via an induction telemetry protocol while operating in the disabled mode or the first advertising mode, and transitions to operating from the disabled mode or the first advertising mode to operating in a second advertising mode based on receiving the clinician session request. From the second advertising mode, the IMD can establish a clinician telemetry session with the clinician device using the RF telemetry communication and a unique security mechanism facilitated by an identifier for the clinician device included in the clinician session request.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 4, 2019
    Assignee: Medtronic, Inc.
    Inventors: Eric A. Schilling, Christopher T. House, Gary P. Kivi, Karen J. Kleckner, John W. Komp, Nicholas C. Wine, Matthew R. Yoder, Bo Zhang
  • Patent number: 10307601
    Abstract: A fixation member configured to anchor an implantable medical device within a patient is attached to an implantable medical device by introducing at least a portion of the fixation member in a tube mechanically connected to the medical device, and plastically deforming the tube in order to pinch the fixation member within a hollow space of the tube.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 4, 2019
    Assignee: Medtronic, Inc.
    Inventors: Kamal Deep Mothilal, George Patras, Albert H. Dunfee
  • Patent number: 10307600
    Abstract: One example of a system includes a local user system to interact with an implantable medical device and a local input device communicatively coupled to the local user system to generate local events. To operate the local user system, the local user system is to receive and process local events from the local input device and receive and process remote events from a remote user system communicatively coupled to the local user system over a network communication link. The local user system is to monitor the network communication link and abort processing of a remote event in response to detecting a quality of service issue.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: June 4, 2019
    Assignee: Medtronic, Inc.
    Inventors: Corey E. Ney, Kent D. Magaard
  • Patent number: 10300268
    Abstract: Devices and methods provide accurate targeting, placement, and/or stabilization of an electrode or other instrument(s) into the brain or other body organ, such as to treat severe tremor or other neurological disorders. Targeting is performed using any form of image-guidance, including real-time MRI, CT, or frameless surgical navigation systems.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 28, 2019
    Assignees: Medtronic, Inc., Mayo Foundation for Medical Education and Research
    Inventors: James Skakoon, Robert Wharen, Matthew Solar, Kari Parmer, Rudy A. Mazzocchi, John David, Frank Murdock, David Hatcher, Thomas I. Miller, Timothy Parmer, Charles Truwit
  • Patent number: 10300273
    Abstract: Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Ethan A. Rooney, Carl D. Wahlstrand, Gary W. King, Thomas E. Cross, Jr., Kenneth T. Heruth, Paul W. Wacnik, Jeffrey S. Evanson
  • Patent number: 10300286
    Abstract: A tool has an outer assembly, which includes a deployment tube, extending around, and moveable with respect to an inner assembly of the tool; the inner assembly includes a single pull wire and a distal member configured to engage an end of an implantable medical device. The deployment tube includes an articulating segment located just proximal to an enlarged distal-most portion, which contains the device and the distal member. Relatively soft and stiff sections of a composite sidewall define the articulating segment and extend alongside one another, such that, when the pull wire is actuated, the composite sidewall causes bending of the segment in two directions. A handle assembly of the tool includes a control member for the pull wire, and may further include a flushing subassembly that has a connector port located at an end of the handle assembly that is opposite a proximal port of the handle.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Sean Ward, Rónán Wood, Gwenda McMullin, Paula McDonnell, Aram Jamous
  • Patent number: 10300283
    Abstract: A device determines values for one or more metrics that indicate the quality of a patient's sleep based on sensed physiological parameter values. Sleep efficiency, sleep latency, and time spent in deeper sleep states are example sleep quality metrics for which values may be determined. The sleep quality metric values may be used, for example, to evaluate the effectiveness of a therapy delivered to the patient by a medical device. In some embodiments, determined sleep quality metric values are automatically associated with the therapy parameter sets according to which the medical device delivered the therapy when the physiological parameter values were sensed, and used to evaluate the effectiveness of the various therapy parameter sets. The medical device may deliver the therapy to treat a non-respiratory neurological disorder, such as epilepsy, a movement disorder, or a psychological disorder. The therapy may be, for example, deep brain stimulation (DBS) therapy.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth, Jonathan C. Werder, Steve R. LaPorte, Nina M. Graves
  • Patent number: 10300287
    Abstract: A delivery system for an implantable medical device includes a tool and a tethering member extending side-by-side within an inner shaft thereof; the tool extends within a first lumen, being in sliding engagement therein, and includes a distal end coupling feature that protrudes from a distal end of the inner shaft; and the tethering member has a first segment extending within a second lumen, and a second segment extending from the first segment and distally from the distal end of the inner shaft to an end of the tethering member, which is configured to engage with a holding member of the device, and with which the coupling feature of the tool is configured to couple. A retainer may be joined to another end of the tethering member that protrudes from a proximal port of the system.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey Madden, Tomas K Kelly, John Gallagher, Gwenda Francis, Brendan Patrick Geraghty, Francis Denis McEvoy, Barry O'Connell, Rónán Wood
  • Patent number: 10300282
    Abstract: Electrical stimulation therapy is provided to a patient in order to induce a patient sensation. The patient sensation may be selected from a number of patient sensations. A set of therapy parameter values are associated with each of the number of patient sensations. A user interface allows a user to adjust one or more characteristics of the patient sensation.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Kevin L. Bright, Nicholas D. Buse
  • Patent number: 10305692
    Abstract: In one example, a method includes transitioning, responsive to determining that a charging coil of wireless charger is in proximity of an implantable medical device (IMD) and by the IMD, from operating in a non-pairing mode into a pairing mode of a far-field wireless communication protocol. In this example, operating in the paring mode comprises: receiving, by the IMD and via a transceiver of the far-field wireless communication protocol, a public encryption key from another device that is different than the wireless charger; and determining, based on the public encryption key of the other device and a public encryption key of the IMD, a link encryption key for future communication between the IMD and the other device. In this example, the method further includes communicating, by the IMD and based on the link encryption key, with the other device via the far-field wireless communication protocol.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventor: Erik J. Peterson
  • Patent number: 10300291
    Abstract: Implantable medical devices include header structures with conductive paths from the feedthrough conductors that may be located on one side of the device to electrical connectors that may be located on an opposite side of the device. The conductive paths may include conductive interconnect pins and lead frame conductors. The conductive interconnect pins may be located in holes present in a header body where the conductive interconnect pins are attached to the feedthrough conductors on one end and are attached to the lead frame conductors on the opposite end. The lead frame conductors then extend to the corresponding electrical connectors. The header body may provide cavities on each side to allow for the insertion of stack assemblies that include the electrical connectors and lead frame conductors.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 28, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Michael J. Baade, Katherine J. Bach, Steven T. Deininger
  • Patent number: 10299693
    Abstract: Techniques for using multiple physiological parameters to provide an early warning for worsening heart failure are described. A medical device monitors a primary diagnostic parameter that is indicative of worsening heart failure, such as intrathoracic impedance or pressure, and one or more secondary diagnostic parameters. The medical device detects worsening heart failure in the patient based on the primary diagnostic parameter when an index that is changed over time based on the primary diagnostic parameter value is outside a range of values, termed the threshold zone. When the index is within the threshold zone, the medical device detects worsening heart failure in the patient based on the one or more secondary diagnostic parameters. Upon detecting worsening heart failure, the medical device may, for example, provide an alert that enables the patient to seek medical attention before experiencing a heart failure event.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: May 28, 2019
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Robert W. Stadler
  • Publication number: 20190151528
    Abstract: An arterial air capture chamber (101) is used in dialysis. The arterial air capture chamber (101) includes an upwardly extending fluid inlet (102) terminating in a fluid inlet port (105) positioned at about a 90° turn relative to a fluid flow of a fluid inlet tube (107). The arterial air capture chamber (101) includes a draw tube (104) with an opposedly positioned beveled opening (306) at about 180° relative to the fluid inlet port (105). The arterial air capture chamber (101) provides improved fluid dynamics, reducing both stagnant flow and turbulence. The arterial air capture chamber (101) also provides for bidirectional flow of fluid through the arterial air capture chamber (101).
    Type: Application
    Filed: June 23, 2016
    Publication date: May 23, 2019
    Applicant: Medtronic, Inc.
    Inventors: Zhigang Li, Mark Daniels, Thomas E. Meyer, Huande Liu
  • Patent number: 10293155
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit event. A signal is sensed by a sensing module coupled to electrodes. A controller detects a short circuit event in response to a slope of the sensed signal exceeding a short circuit threshold.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 21, 2019
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Marshall S. Stanton
  • Patent number: 10293156
    Abstract: Medical lead bodies that are paired each include a braided conductive shield. The braided conductive shield of one lead body has a value for a physical parameter that differs from a value for the physical parameter of the second lead body. The difference in values of the physical parameter for the paired lead bodies results in a reduction in heating from exposure of the lead bodies to radiofrequency energy at electrodes associated with the lead bodies. The lead bodies may be paired by being implanted adjacently to one another. The lead bodies may be further paired by being coupled to a same distal body, such as a paddle containing the electrodes.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 21, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Mark J. Conroy, Spencer M. Bondhus, Bryan D. Stem