Patents Assigned to Medtronic, Inc.
  • Patent number: 11730948
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 22, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 11730949
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 22, 2023
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, John E. Kast, Xuan K. Wei, Todd V. Smith, Joel A. Anderson, Forrest C. M. Pape, Duane L. Bourget, Timothy J. Denison, David A. Dinsmoor, Randy S. Roles, Stephen J. Roddy
  • Patent number: 11724110
    Abstract: A stimulation therapy system dynamically modifies therapy intensity based on measured neurotransmitter levels. In some examples, the system delivers, via an electrode implanted in a brain of a patient and stimulation circuitry, an electrical stimulus; monitors an electrical current generated by the stimulation circuitry to deliver the electrical stimulus; determines, based on the electrical current, a value representative of a concentration of dopamine in the brain of the patient; determines, based on the value representative of the concentration of dopamine, a value for one or more stimulation parameters that at least partially define electrical stimulation therapy; and delivers, via the electrode, the electrical stimulation therapy.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Alan Shi
  • Patent number: 11728670
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized over-heating of the device.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11724111
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Hyun J. Yoon, Wade M. Demmer, Matthew J. Hoffman, Robert A. Betzold, Jonathan D. Edmonson, Michael L. Ellingson, Ben W. Herberg, Juliana E. Pronovici, James D. Reinke, Todd J. Sheldon, Paul R. Solheim
  • Patent number: 11724113
    Abstract: A pacemaker having a motion sensor is configured to set atrial event sensing parameters used for sensing atrial systolic events from a motion signal produced by the motion sensor. The pacemaker sets at least one atrial event sensing parameter by identifying ventricular electrical events and setting a sensing window following each of the ventricular electrical events. The pacemaker may determine a feature of the motion signal produced by the motion sensor during each of the sensing windows and set the atrial event sensing parameter based on the determined features.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Vincent E. Splett, Keelia Doyle, Greggory R. Herr, Juliana E. Pronovici, Todd J. Sheldon
  • Patent number: 11728610
    Abstract: Implantable medical devices include elongated conductor bodies and related features including an attachment to the medical device at one end and a connector that receives a medical lead at the other end. The connector may have various features such as a modular design whereby the connector is constructed from a series of stacked contact modules. Other features of the connector include electrical contacts that are relatively thin conductors or the order of 0.040 inches or less and that may include radial protrusions to establish contact with the electrical connectors of the lead. Furthermore, electrical contacts may be mounted within the connector in a floating manner so that radial movement of the electrical contact may occur during lead insertion. Additional features include a feedthrough where conductors exposed beyond a housing of the implantable medical device make direct electrical connection to conductors present within the elongated body.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: August 15, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Dale F. Seeley, Michael T. Hegland
  • Patent number: 11724028
    Abstract: The disclosure describes systems and techniques for detection of pump thrombosis in mechanical circulatory support (MCS) devices. An example pump thrombosis detection system includes a transducer and processing circuitry. The transducer may be configured to generate a signal representative of a mechanical wave from a mechanical circulatory support device. The processing circuitry is communicatively coupled to the transducer. The processing circuitry may be configured to determine an indication of pump thrombosis based on the signal and, based on the indication of pump thrombosis, control the pump thrombosis detection system to at least one of generate an alert or initiate an intervention.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T. Sambelashvili, David A. Anderson, James K. Carney, David M. Steinhaus, Narendra K. Simha
  • Patent number: 11723577
    Abstract: Techniques are disclosed for explaining and visualizing an output of a machine learning system that detects cardiac arrhythmia in a patient. In one example, a computing device receives cardiac electrogram data sensed by a medical device. The computing device applies a machine learning model, trained using cardiac electrogram data for a plurality of patients, to the received cardiac electrogram data to determine, based on the machine learning model, that an episode of arrhythmia has occurred in the patient and a level of confidence in the determination that the episode of arrhythmia has occurred in the patient. In response to determining that the level of confidence is greater than a predetermined threshold, the computing device displays, to a user, a portion of the cardiac electrogram data, an indication that the episode of arrhythmia has occurred, and an indication of the level of confidence that the episode of arrhythmia has occurred.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Lindsay A. Pedalty, Niranjan Chakravarthy, Rodolphe Katra, Tarek D. Haddad, Andrew Radtke, Siddharth Dani, Donald R. Musgrove
  • Patent number: 11723537
    Abstract: Techniques for transmitting diagnostic information stored in an implantable medical device (IMD) based on patient hospitalization are described. For example, the IMD may transmit higher resolution diagnostic information to a clinician and/or an external device during a hospitalization period to aid the clinician in evaluating heart failure treatment and when discharge is proper. This higher resolution diagnostic information may include one or more patient metrics automatically generated and transmitted by the IMD at least once every two hours. During a post-hospitalization period, the IMD may transmit lower resolution diagnostic information to a clinician that indicates a risk level of re-hospitalization. The lower resolution diagnostic information may include the risk level and/or patient metrics once a day, for example. In this manner, the IMD transmitted diagnostic information may be tailored to the specific heart failure monitoring needed by the patient.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Jodi L. Redemske, Eduardo N. Warman, Douglas A. Hettrick, Kevin T. Ousdigian
  • Patent number: 11725995
    Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
  • Patent number: 11717186
    Abstract: A medical device system and method that includes accelerometer circuitry configured to generate at least one signal, a memory, and processing circuitry coupled to the accelerometer circuitry and the memory. The processing circuitry is configured to monitor a patient for a Sit-To-Stand transition based upon the at least one signal, detect the Sit-to-Stand transition, determine if the patient has been inactive for a predetermined period of time prior to the Sit-to-Stand transition, and if the patient has been inactive for at least the predetermined period of time prior to the Sit-to-Stand transition, determine a body stability score of the patient.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventor: Bruce D. Gunderson
  • Patent number: 11717352
    Abstract: A method and system for determining a target location for a medical device having complex geometry relative to an anatomical feature, and for navigating and positioning the medical device at the target location. The system may include a medical device including a treatment element having a centroid, one or more navigation electrodes, and a longitudinal axis and a navigation system in communication with the one or more navigation electrodes, the navigation system including a processing unit. The processing unit may be programmed to define a plane that approximates a surface of the anatomical feature, define a centroid of the anatomical feature, define a vector that is normal to the plane and extends away from the centroid of the anatomical feature, and determine a target location for the treatment element of the medical device based on the vector to assist the user in placing the device for treatment.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventor: Scott A. Hareland
  • Patent number: 11718018
    Abstract: Systems and methods for manufacturing elongate medical devices including internal components embedded between multiple jacket layers. The system including a heating cartridge, a heating element, a filament handling system, a substrate handling system, and a controller to feed and melt each of the filaments for forming the multiple jacket layers. The system may include a single heating cartridge adapted to make multiple passes to form a first and second jacket or multiple heating cartridges that sequentially form a first and second jacket.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jonathan E. Baxter, Kristin M. Johnson, Gregory N. Nesseth, Jay T. Rassat
  • Patent number: 11717208
    Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
  • Patent number: 11717688
    Abstract: A medical device includes a motion sensor configured to sense a motion signal. The medical device includes a control circuit configured to determine at least one ventricular event metric from the motion signal sensed over multiple of atrial cycles, determine that the ventricular event metric meets atrioventricular block criteria and generate an output in response to determining the atrioventricular block.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: Michelle M. Galarneau, Vincent P. Ganion, Saul E. Greenhut, Yanina Grinberg, Todd J. Sheldon, Paul R. Solheim, Hyun J. Yoon
  • Patent number: 11712188
    Abstract: Systems and methods may monitor electrical activity of a patient's heart using electrodes during delivery of cardiac therapy and determine a degree of posterior left bundle branch engagement based on the monitored electrical activity. The systems and methods may adjust the cardiac therapy based on the degree of posterior left bundle branch engagement.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: August 1, 2023
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11712337
    Abstract: A delivery system for delivery of an implantable stented device to a body lumen that includes an elongated member having a distal tip and a proximal end portion, a wire connection member positioned between the distal tip and proximal end portion of the elongated member, and a plurality of capturing wires extending from a distal end of the wire connection member. Each of the capturing wires includes a distal end having a lower portion that is moveable relative to an upper portion between an open position and a closed position, and a slot defined by the upper and lower portions when they are in the closed position.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: August 1, 2023
    Assignee: Medtronic, Inc.
    Inventor: Paul Rothstein
  • Patent number: 11712569
    Abstract: The instant application relates to inductive charging of devices subject to migration. Embodiments described herein provide charging to devices at variable depths and locations to accommodate both net displacement of an implantable device as well as angular rotation of the implantable device by selecting appropriate sets or subsets of available field generation coils.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 1, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Fried, Venkat Gaddam, Brett Otteson, Mehmet Arcan Erturk
  • Publication number: 20230233220
    Abstract: A surgical method treats infections on a lead positioned at least partially within a patient's body. The surgical method includes uncoupling the lead from a pulse generator. The lead is then coupled to an ultrasound wave generator. Ultrasound waves are propagated from the ultrasound wave generator through the lead. Systems are disclosed.
    Type: Application
    Filed: March 29, 2023
    Publication date: July 27, 2023
    Applicant: MEDTRONIC INC.
    Inventors: ALAN CHEN, JIAN CAO, ZHONGPING YANG