Patents Assigned to Medtronic Vascular, Inc.
  • Patent number: 11344399
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: May 31, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Publication number: 20220160344
    Abstract: An introducer sheath system including an outer layer, an inner layer, and a dilator is disclosed. The outer layer is circumferentially extending between a first longitudinal edge and a second longitudinal edge. An expandable gap is defined between the first and second longitudinal edges. The inner layer is disposed within the outer layer. The inner layer is configured to be continuously circumferentially expandable. The inner layer includes a non-extended state having a circumferential portion extending circumferentially inside the outer layer and a fold portion extending into an interior cavity of the inner layer. The inner layer includes an extended state wherein the fold portion extends at least partially circumferentially between the first and second longitudinal edges. The dilator is extendable longitudinally within the inner layer. The dilator includes a recess configured to accommodate the fold portion of the inner layer.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Applicant: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Patent number: 11331456
    Abstract: An example medical device includes a balloon that is inflatable to an inflated configuration. The balloon includes a non-compliant layer coextruded on an inner layer, and an outer layer coextruded on the non-compliant layer. The non-compliant layer is configured to delaminate from the inner and the outer layers in the inflated configuration. The non-compliant layer may be configured to rupture in the inflated configuration. An example technique includes inflating the balloon to a predetermined pressure sufficient to rupture the non-compliant layer and insufficient to rupture both the inner and outer layers. The example technique further includes deflating the balloon, and introducing the balloon into a vasculature. Another example technique includes coextruding a non-compliant layer on an inner layer, coextruding an outer layer on the non-compliant layer, and forming a balloon from the inner layer, the non-compliant layer, and the outer layer.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Stephen Nash, Aram Jamous, Colin Meade
  • Patent number: 11330989
    Abstract: A catheter, such as a fractional flow reserve catheter, includes an elongate shaft having a proximal end optionally coupled to a handle or luer fitting and a distal end having a distal opening. A pressure sensing wire extends to the distal portion of the elongate shaft to be coupled to a pressure sensor mounted on the distal end for measuring a pressure of a fluid within lumen of vessel. The pressure sensor wire is disposed within a pocket formed adjacent to the pressure sensor thereby minimizing the profile of the catheter. Bending or flexing stress or strain experienced by a pressure sensor mounted to a fractional flow reserve catheter when tracking the catheter through the vasculature creates a distortion of the sensor resulting in an incorrect pressure reading or bend error. In order to isolate the sensor from bending or flexing stress and strain, the sensor is mounted so that the sensor is spaced apart from the elongate shaft of the catheter.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Gerry McCaffrey, Christopher Murphy, Fiachra Sweeney, John Kelly
  • Patent number: 11330994
    Abstract: A catheter includes a proximal shaft, a distal shaft, a pressure sensor, and at least one pressure sensor wire. The proximal shaft is substantially C-shaped such that in cross-section, the proximal shaft includes a first circumferential end, a second circumferential end, and a gap between the first circumferential and circumferential end. The proximal shaft defines a groove configured to receive a guidewire therein. The distal shaft is coupled to the proximal shaft and defines a guidewire lumen therein. The pressure sensor is coupled to the distal shaft. The pressure sensor wire is operably connected to the pressure sensor. A proximal portion of the pressure sensor wire is disposed within a proximal shaft wall of the proximal shaft and a distal portion of the pressure sensor wire is disposed within a distal shaft wall of the distal shaft.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: May 17, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Ronan Rogers, Matthew Fleming, Ronan Finn, Timothy Jones, Francis McEvoy, Joshua Hillas, James Keaveney, Sean Ward, H. Allan Steingisser
  • Patent number: 11324853
    Abstract: The present disclosure pertains to crosslinkable compositions and systems as well as methods for forming crosslinked compositions in situ, including the use of the same for controlling the movement of bodily fluid within a patient, among many other uses.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: May 10, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Craig Wiltsey, Nikhita Mansukhani, Jeffrey Groom, II, Kate Rielly, Changcheng You, Danny Concagh
  • Patent number: 11324582
    Abstract: The techniques of this disclosure generally relate to an assembly including a docking graft. The docking graft includes a main graft defining a main lumen, a first internal lumen within the main lumen, a second internal lumen within the main lumen, and a main docking lumen within the main lumen. The first and second internal lumens are configured to receive first and second bridging stent graft therein. The main docking lumen is configured to receive a tube graft therein. The first internal lumen, the second internal lumen, and the main docking lumen being parallel to one another and extending an entire length of the docking graft when the docking graft is in a relaxed configuration. The docking graft forms the foundation, or anchor device, for attachment of the first bridging stent graft, the second bridging stent graft, and the tube graft within the aorta.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: May 10, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Mark Stiger, Travis Rowe
  • Patent number: 11311648
    Abstract: The present disclosure pertains to crosslinkable compositions and systems as well as methods for forming crosslinked compositions in situ, including the use of the same for controlling the movement of bodily fluid within a patient, among many other uses.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: April 26, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Craig Wiltsey, Nikhita Mansukhani, Jeffrey Groom, II, Kate Rielly, Changcheng You, Danny Concagh
  • Patent number: 11311397
    Abstract: An iliac branch device has an external iliac body, a common iliac branch, and an internal iliac branch. A diameter of the proximal opening of the common iliac branch is greater than a diameter of a distal opening of the external iliac body. The iliac branch device is configured to be deployed without going up and over the aortic bifurcation and without using some form of supra-aortic antegrade access such as through brachial or axillary artery access. This simplifies the procedure and reduces procedure time thus maximizing the success rate of the procedure and allows the procedure to be performed on a broad patient population.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 26, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Timothy Bertini, Adam Shipley
  • Patent number: 11304794
    Abstract: The techniques of this disclosure generally relate to modular stent device and method of deploying the same. The method includes introducing a delivery system including the modular stent device via supra aortic access. The delivery system is advanced into the ascending aorta. Once positioned, the modular stent device is deployed from the delivery system such that an artery leg of the modular stent device engages the brachiocephalic artery and a bypass gate engages the aorta, wherein the artery leg partially collapses the bypass gate. The artery leg has a greater radial force than the bypass gate such that the artery leg remains un-collapsed and opened. Accordingly, blood flow through the artery leg and perfusion of the brachiocephalic artery and preservation of blood flow to cerebral territories including the brain is insured.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 19, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mathew A. Haggard
  • Patent number: 11298154
    Abstract: A guide extension catheter assembly including a guide extension catheter and a support device. The guide extension catheter includes a shaft and a tubular member. The support device includes a push member and a shuttle member. The guide extension catheter assembly is configured to selectively provide a delivery state in which at least a portion of the shuttle member is disposed within the lumen, a leading end of the shuttle member is distal a distal end of the tubular member, and the shuttle member is directly, physically connected to the tubular member. In the delivery state, a longitudinal distal force applied to the push member is transferred to the tubular member as a longitudinal distal force via the shuttle member. The guide extension catheter assemblies of the present disclosure can promote a two stage guide extension catheter deployment.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 12, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Barry O'Connell, Sean Ward, John K. Tuohy
  • Patent number: 11285003
    Abstract: A prolapse prevention device formed by a continuous wire-like structure having a first end and a second end disconnected from each other. The continuous wire-like structure of the prolapse prevention device is substantially straight in a delivery configuration. The prolapse prevention device in a deployed configuration includes a centering ring of the continuous wire-like structure configured to seat adjacent to and upstream of an annulus of a heart valve in situ, a vertical support of the continuous wire-like structure which extends from the centering ring and includes an apex configured to seat against a roof of an atrium in situ, and a leaflet backstop of the continuous wire-like structure extending radially inward from the centering ring and configured to contact at least at least a first leaflet of the heart valve in situ to exert a pressure in a downstream direction on the first leaflet to prevent the first leaflet from prolapsing into the atrium.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: March 29, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Niall Duffy, David Farascioni, Adam Fitzgerald, Nathan Knutson, Ana Menk, Aran Murray, Jay Rassat
  • Patent number: 11284989
    Abstract: A stent-graft prosthesis for implantation within a body vessel includes a graft material, a frame, and a channel. The graft material includes a proximal end, a distal end, and a graft lumen extending between the proximal and distal ends. The frame is coupled to the graft material. The channel is configured to relieve pressure associated with pulsatile blood flow during implantation of the stent-graft prosthesis within a body vessel. The channel permits blood to flow from an upstream side of the stent-graft prosthesis to a downstream side of the stent-graft prosthesis when the stent-graft prosthesis is in a partially expanded configuration in the body vessel. The channel may be a plurality of channels.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: March 29, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffery Argentine, Mitchell Springer, Adam Shipley, Mark Stiger
  • Patent number: 11284984
    Abstract: Aspects of the disclosure relate to “wet” transcatheter prosthetic heart valve or other implant packaging and assemblies in which a prosthetic heart valve or other implant is loaded into a first portion of a delivery device and positioned within a container in which sterilizing fluid is retained to sterilize interior portions of the container as well as provide moisture to prevent the implant from drying out. The disclosure also relates to methods of sterilizing the disclosed assemblies. Some disclosed methods include at least two sterilizing steps and adjustment of a mechanical seal member or formation of multiple seals so that areas proximate the seals are also sterilized during the sterilization process.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: March 29, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: David Clarke, Karina Doyle, Paul Devereux, Gerry Kearns, Padraigh Jennings, Constantino Fiuza, Stephen Montgomery
  • Patent number: 11278407
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 22, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Joel Racchini, Jeffrey Sandstrom
  • Patent number: 11273289
    Abstract: The techniques of this disclosure generally relate to a vector flush sizing catheter that is used initially to disperse contrast and measure a length of a main vessel using radiopaque measuring markers of the catheter. Subsequently, the vector flush sizing catheter is used to guide and introduce another endovascular device into the main vessel. By using the vector flush sizing catheter for both procedures, the exchange of catheters, the complexity of the procedure, and the associated risks are minimized.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: March 15, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventor: Christopher J. Della Vecchia
  • Patent number: 11272850
    Abstract: A catheter for measuring a fractional flow reserve includes a proximal shaft, a distal shaft coupled to a distal portion of the proximal shaft, and a pressure sensor coupled to the distal shaft. The distal shaft includes a middle wall portion configured to extend through a stenosis in a vessel. The middle wall portion of the distal shaft includes at least one skive reducing the cross-sectional profile of the middle wall portion. The middle wall portion may further include at least one stiffening wire for increasing columnar stiffness of the middle wall portion.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 15, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Ronan Finn, John Kelly, Matthew Fleming
  • Patent number: 11273035
    Abstract: Transcatheter heart valve delivery systems having a tip assembly configured to close the hole or perforation made in a patient's septal wall after transseptal delivery of a stented prosthetic heart valve to a defective heart valve (e.g., a mitral valve). The delivery device is configured to permit in vivo release of the tip assembly immediately after deployment of the stented prosthetic heart valve to implant the tip assembly into the septal wall proximate the hole through which the stented prosthetic heart valve is delivered. Methods of treating the defective heart valve, including closing the hole made during transseptal delivery of the stented prosthetic heart valve with the tip assembly of the delivery device are also disclosed.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 15, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Patent number: 11273034
    Abstract: Embodiments hereof relate methods of delivering a valve prosthesis to an annulus of a native valve of a heart. A valve delivery system is introduced into a ventricle of the heart via a ventricular wall of the heart. The valve delivery system has a displacement component at the distal portion thereof. The valve prosthesis is in a delivery configuration and the displacement component is in a delivery state in which the displacement component has a first outer diameter. While the valve prosthesis is in the delivery configuration, the displacement component of the valve delivery system is radially expanded into an expanded state in which the displacement component has a second outer diameter greater than the first outer diameter. The valve delivery system is advanced towards the annulus of the native valve of the heart with the displacement component in the expanded state to displace chordae tendineae.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: March 15, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventor: Marc Anderson
  • Patent number: 11266425
    Abstract: A catheter assembly includes a catheter comprising a flexible elongated member including a distal portion that includes a tubular body defining an inner lumen and a plurality of body apertures that extend through a sidewall of the tubular body into the inner lumen, and a plurality of primary electrodes positioned along the tubular body. The catheter assembly includes a wire defining at least one secondary electrode, the wire being configured to be slidably moved through the inner lumen of the tubular body, where the wire and the plurality of primary electrodes are configured to electrically couple to an energy source that delivers an electrical pulse to a fluid in contact with the plurality of primary electrodes and the at least one secondary electrode to cause the fluid to undergo cavitation to generate a pressure pulse wave within the fluid.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 8, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Gerry Oliver McCaffrey, Grainne Teresa Carroll, Risa Tom Egerter, Aran Murray, Jonathan Ashley Cope, Peter Glynn, Christopher W. Storment, Jack Wallis