Abstract: A valve prosthesis includes an expandable frame. The expandable frame has an outflow portion and an inflow portion connected to the outflow portion. The frame defines a central lumen extending between the outflow portion and the inflow portion. The frame is generally cylindrical in a fully expanded configuration. When the frame is in the fully expanded configuration, an outer surface of the inflow portion is concave. The inflow portion has an upper inflow portion and a lower inflow portion. When the frame is in the fully expanded configuration, the upper inflow portion flares outwardly from the central lumen of the frame to greater extent than the lower inflow portion.
Type:
Grant
Filed:
May 2, 2014
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
Michael Gloss, Timothy Groen, Carolyn Majkrzak, Matthew Rust, Timothy Ryan, Matthew Weston
Abstract: Apparatus are provided for motor control systems and related medical devices. In one embodiment, a control system includes a motor having a rotor, a sensor to obtain a measured displacement that is influenced by rotation of the rotor, and a control module coupled to the sensor. The control module adjusts a duty cycle for a modulated voltage applied to the motor in response to a difference between an expected displacement and the measured displacement. The expected displacement is influenced by or otherwise corresponds to a commanded rotation of the rotor.
Abstract: The present invention is directed to compositions methods and kits for regulation of gene therapies, including, without limitation, reversible gene therapies and allele-specific therapies.
Type:
Grant
Filed:
November 3, 2006
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
William F. Kaemmerer, Eric Burright, Jennifer Heisel, Deepak Thakker
Abstract: Apparatus are provided for motor control systems and related medical devices. In one embodiment, a control system includes a motor having a rotor, a modulation module coupled to the motor, and a control module coupled to the motor and the modulation module. The modulation module generates a modulated voltage that is applied to the motor, and the control module adjusts a duty cycle of the modulated voltage to achieve a commanded rotation of the rotor and detects a degradation condition based on the duty cycle.
Abstract: The disclosure describes techniques and systems for filtering noise from a physiological signal. In one example, one or more processors are configured to receive a signal indicative of physiological activity of a patient, wherein the signal comprises noise at one or more frequencies, and filter the noise from the signal according to a noise rejection model, wherein the noise rejection model predicts the noise at the one or more frequencies. The one or more processors may also be configured to, responsive to initiation of a blanking period for the signal, advance the noise rejection model in time during the blanking period, and, responsive to termination of the blanking period, filter, based on the noise rejection model advanced in time, the noise at the one or more frequencies from the signal.
Abstract: Random access memory having a plurality of memory cells, each of the plurality of memory cells having a memory element and a first electrical characteristic being variable based, at least in part, on temperature and a bias circuit operatively coupled to at least one of the plurality of memory cells, the bias circuit being configured to generate a bias voltage for the at least one of the plurality of memory cells. The bias circuit has a second electrical characteristic being variable based, at least in part, on temperature. The first electrical characteristic is approximately proportional to the second electrical characteristic over a predetermined range of temperatures, the predetermined range of temperatures being greater than zero. The bias voltage on each of the plurality of memory cells is approximately proportional with variations in the first electrical characteristic over the predetermined range of temperatures.
Type:
Grant
Filed:
October 30, 2012
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
Kevin K. Walsh, Brandon P. Scott, Larry E. Tyler
Abstract: A method and apparatus is provided for determining whether a current atrial-ventricular (AV) delay during cardiac pacing is appropriate for proper mechanical coupling of the atrium and ventricle. If proper mechanical coupling is determined to not exist, an additional atrial contraction is induced within the same ventricular cycle to maintain atrial-ventricular mechanical coupling.
Type:
Grant
Filed:
July 23, 2008
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
Douglas A. Hettrick, Todd Jon Sheldon, Paul D. Ziegler, David E. Euler
Abstract: A device includes a signal generator module, a processing module, and a housing. The signal generator module is configured to deliver pacing pulses to an atrium. The processing module is configured to detect a ventricular activation event and determine a length of an interval between the ventricular activation event and a previous atrial event that preceded the ventricular activation event. The processing module is further configured to schedule a time at which to deliver a pacing pulse to the atrium based on the length of the interval and control the signal generator module to deliver the pacing pulse at the scheduled time. The housing is configured for implantation within the atrium. The housing encloses the stimulation generator and the processing module.
Type:
Grant
Filed:
December 19, 2014
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
Matthew D. Bonner, Saul E. Greenhut, Todd J. Sheldon, Wade M. Demmer
Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
Type:
Grant
Filed:
June 7, 2011
Date of Patent:
June 28, 2016
Assignee:
Medtronic, Inc.
Inventors:
David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
Abstract: A delivery system and method for positioning and partially deploying a replacement valve at an implantation site, verifying the location of the replacement valve relative to the implantation site, and retrieving the partially deployed stent for repositioning relative to the implantation site.
Abstract: The present invention relates to a method, device, and system for improved mapping and/or ablation of a tissue. The device may generally include an elongate body and a distal assembly affixed to the elongate body that includes a treatment electrode having a conductive mapping region and a selectively conductive ablation region that is conductive of high-frequency current and substantially non-conductive of low-frequency current. Alternatively, the device may generally include a treatment electrode having a conductive mapping or ablation region and a region that is coated with an electrically insulated but thermally conductive layer.
Type:
Grant
Filed:
January 25, 2013
Date of Patent:
June 21, 2016
Assignee:
Medtronic Ablation Frontiers LLC
Inventors:
Mark T. Stewart, Mark Allen Benscoter, Jon Virgil Evans, Timothy G. Laske, Gonzalo Martinez
Abstract: An implantable medical device and associated method deliver a therapy to an autonomic nerve. The therapy delivery includes delivering therapeutic low frequency (LF) electrical stimulation pulses to the autonomic nerve and delivering a high frequency electrical signal to the autonomic nerve during the LF frequency stimulation pulse delivery. The high frequency stimulation signal blocks activation of autonomic nerve fibers innervating a non-targeted tissue during the therapeutic LF stimulation pulse delivery.
Abstract: A sensing and storage system for fluid balance during dialysis is provided. The sensing and storage system has flow sensors on either side of a dialyzer in a controlled volume dialysate flow path. The sensors are positioned so that no fluid can be added to or removed from the dialysate flow path between the sensors except for that which is added or removed by action of a control pump. The sensing and storage system can have a fluid removal line for the removal of fluid from the dialysate flow loop.
Type:
Application
Filed:
December 10, 2014
Publication date:
June 16, 2016
Applicant:
Medtronic, Inc.
Inventors:
Thomas E. Meyer, William P. Hajko, Thomas P. Hartranft
Abstract: The degassing system can include a degassing vessel and can utilize a vacuum pump and a fluid pump located downstream of the degassing vessel to control the pressure within the degassing vessel in order to control the concentration of gases in fluid exiting the degassing system. The degassing system can further comprise sensors in communication with the pumps to control the rate of flow and pressure through the degassing system. The degassing system may be placed in a dialysate flow path to remove dissolved gases including carbon dioxide from the dialysate.
Type:
Application
Filed:
December 10, 2014
Publication date:
June 16, 2016
Applicant:
Medtronic, Inc.
Inventors:
Thomas E. Meyer, William P. Hajko, Daniel Jordan Bloomberg
Abstract: A water management system for use in dialysis. The water management system includes apparatuses to generate purified water, and a reservoir for storing the purified water. The reservoir can be connected to a dialysate flow loop and the purified water can be generated, stored, and used for later cleaning and disinfection of the dialysis flow loop and the components thereon.
Abstract: Devices, systems and methods are disclosed for the ablation of tissue. A steerable ablation catheter can include one or more ablation elements at its distal end and one or more ablation elements fixedly attached to its shaft. The distal end of the ablation catheter can be deflected to assume a number of different deflection geometries in at least one direction along the shaft. One feature of the ablation catheter is that its shaft can comprise materials of differing durometers or stiffnesses attached together at a joint. Methods associated with use of the ablation catheter are also covered.
Type:
Grant
Filed:
August 28, 2014
Date of Patent:
June 14, 2016
Assignee:
Medtronic Ablation Frontiers LLC
Inventors:
Randell L. Werneth, Ricardo D. Roman, Christopher G. Kunis, Alexander J. Asconeguy, Sadaf Soleymani, Jeffrey Trinidad, Martin Chambers, Hakan Oral, Fred Morady, Jerald L. Cox, Guillermo W. Moratorio, Samuel Fu, J. Christopher Flaherty
Abstract: Methods, systems, and/or devices for selecting spinal cord stimulation (SCS) electrode array configurations to provide effective cardiac therapy. Physiological parameters related to the heart may be monitored and analyzed during the delivery of SCS using various SCS electrode array configurations to determine an effect SCS electrode array configuration.
Type:
Grant
Filed:
July 28, 2011
Date of Patent:
June 14, 2016
Assignee:
Medtronic, Inc.
Inventors:
Lilian Kornet, Tim D. J. Jongen, Raphael A. Schneider, Pascalle H. C. M. Reiters
Abstract: In general, this disclosure is directed to signal processing based methods to reject oversensing due to electromagnetic interference or other noise without compromising tachyarrhythmia detection sensitivity. A method comprises sensing a signal indicative of cardiac activity, detecting a cardiac event based on the signal, determining a count of fluctuations of the signal within a window between the detected cardiac event and a next cardiac event, and determining whether noise is present in the signal based on the count.
Abstract: Tools for determining and adjusting the setting of an adjustable valve are disclosed. These tools allow a medical professional to locate and non-invasively determine the setting of an implanted valve. After the valve has been located and the setting of the valve determined, the valve may be re-adjusted non-invasively. There are three tools: a locator tool, an indicator tool and an adjustment tool. The locator tool allows the physician to locate the adjustable valve of interest and align the locator tool with a specific orientation of the valve. The indicator tool indicates the current setting of the adjustable valve and confirms new settings of the valve after the new settings have been implemented. The adjustment tool interacts magnetically with the implanted adjustable valve to couple with a movable internal element to change the setting of the valve. The indicator tool and the adjustment tool physically cooperate with the locator tool to accomplish the respective functions of the tools.
Type:
Grant
Filed:
January 6, 2014
Date of Patent:
June 14, 2016
Assignee:
Medtronic, Inc.
Inventors:
William J. Bertrand, Leanne M. Lintula, Leonard Porche
Abstract: A method of forming a stent includes forming a wave form from a formable material. The wave form includes a plurality of substantially straight portions and a plurality of curved portions, each curved portion connecting adjacent substantially straight portions. The method includes wrapping the wave form around a mandrel at an angle to form a helical coil comprising a plurality of turns, connecting a first curved portion of a first turn to an adjacent second curved portion of a second turn at a position along the wave form to define an end of the stent, and removing excess material from an end of the wave form extending past the first curved portion while smoothing the end of the stent.